Dynamic brain network configurations during rest and an attention task with frequent occurrence of mind wandering

Research output: Contribution to journalArticle

Abstract

Mind wandering (MW) has become a prominent topic of neuroscientific investigation due to the importance of understanding attentional processes in our day-to-day experiences. Emerging evidence suggests a critical role for three large-scale brain networks in MW: the default network (DN), the central executive network (CEN), and the salience network (SN). Advances in analytical methods for neuroimaging data (i.e., dynamic functional connectivity, DFC) demonstrate that the interactions between these networks are not static but dynamically fluctuate over time (Chang & Glover, 2010, NeuroImage, 50(1), 81–98). While the bulk of the evidence comes from studies involving resting-state functional MRI, a few studies have investigated DFC during a task. Direct comparison of DFC during rest and task with frequent MW is scarce. The present study applies the DFC method to neuroimaging data collected from 30 participants who completed a resting-state run followed by two runs of sustained attention to response task (SART) with embedded probes indicating a high prevalence of MW. The analysis identified five DFC states. Differences between rest and task were noted in the frequency of three DFC states. One DFC state characterized by negative DN–CEN/SN connectivity along with positive CEN–SN connectivity was more frequently observed during task vs. rest. Two DFC states, one of which was characterized by weaker connectivity between networks, were more frequently observed during rest than task. These findings suggest that the dynamic relationships between brain networks may vary as a function of whether ongoing cognitive activity unfolds in an “unconstrained” manner during rest or is “constrained” by task demands.

Original languageEnglish (US)
JournalHuman Brain Mapping
DOIs
StateAccepted/In press - Jan 1 2019
Externally publishedYes

Fingerprint

Neuroimaging
Brain
Magnetic Resonance Imaging

Keywords

  • dynamic functional connectivity
  • self-generated thoughts
  • sustained attention
  • unconstrained mind wandering

ASJC Scopus subject areas

  • Anatomy
  • Radiological and Ultrasound Technology
  • Radiology Nuclear Medicine and imaging
  • Neurology
  • Clinical Neurology

Cite this

@article{6f65ef24542a4e599e902498043b6322,
title = "Dynamic brain network configurations during rest and an attention task with frequent occurrence of mind wandering",
abstract = "Mind wandering (MW) has become a prominent topic of neuroscientific investigation due to the importance of understanding attentional processes in our day-to-day experiences. Emerging evidence suggests a critical role for three large-scale brain networks in MW: the default network (DN), the central executive network (CEN), and the salience network (SN). Advances in analytical methods for neuroimaging data (i.e., dynamic functional connectivity, DFC) demonstrate that the interactions between these networks are not static but dynamically fluctuate over time (Chang & Glover, 2010, NeuroImage, 50(1), 81–98). While the bulk of the evidence comes from studies involving resting-state functional MRI, a few studies have investigated DFC during a task. Direct comparison of DFC during rest and task with frequent MW is scarce. The present study applies the DFC method to neuroimaging data collected from 30 participants who completed a resting-state run followed by two runs of sustained attention to response task (SART) with embedded probes indicating a high prevalence of MW. The analysis identified five DFC states. Differences between rest and task were noted in the frequency of three DFC states. One DFC state characterized by negative DN–CEN/SN connectivity along with positive CEN–SN connectivity was more frequently observed during task vs. rest. Two DFC states, one of which was characterized by weaker connectivity between networks, were more frequently observed during rest than task. These findings suggest that the dynamic relationships between brain networks may vary as a function of whether ongoing cognitive activity unfolds in an “unconstrained” manner during rest or is “constrained” by task demands.",
keywords = "dynamic functional connectivity, self-generated thoughts, sustained attention, unconstrained mind wandering",
author = "Ekaterina Denkova and Nomi, {Jason S.} and Uddin, {Lucina Q.} and Jha, {Amishi P.}",
year = "2019",
month = "1",
day = "1",
doi = "10.1002/hbm.24721",
language = "English (US)",
journal = "Human Brain Mapping",
issn = "1065-9471",
publisher = "Wiley-Liss Inc.",

}

TY - JOUR

T1 - Dynamic brain network configurations during rest and an attention task with frequent occurrence of mind wandering

AU - Denkova, Ekaterina

AU - Nomi, Jason S.

AU - Uddin, Lucina Q.

AU - Jha, Amishi P.

PY - 2019/1/1

Y1 - 2019/1/1

N2 - Mind wandering (MW) has become a prominent topic of neuroscientific investigation due to the importance of understanding attentional processes in our day-to-day experiences. Emerging evidence suggests a critical role for three large-scale brain networks in MW: the default network (DN), the central executive network (CEN), and the salience network (SN). Advances in analytical methods for neuroimaging data (i.e., dynamic functional connectivity, DFC) demonstrate that the interactions between these networks are not static but dynamically fluctuate over time (Chang & Glover, 2010, NeuroImage, 50(1), 81–98). While the bulk of the evidence comes from studies involving resting-state functional MRI, a few studies have investigated DFC during a task. Direct comparison of DFC during rest and task with frequent MW is scarce. The present study applies the DFC method to neuroimaging data collected from 30 participants who completed a resting-state run followed by two runs of sustained attention to response task (SART) with embedded probes indicating a high prevalence of MW. The analysis identified five DFC states. Differences between rest and task were noted in the frequency of three DFC states. One DFC state characterized by negative DN–CEN/SN connectivity along with positive CEN–SN connectivity was more frequently observed during task vs. rest. Two DFC states, one of which was characterized by weaker connectivity between networks, were more frequently observed during rest than task. These findings suggest that the dynamic relationships between brain networks may vary as a function of whether ongoing cognitive activity unfolds in an “unconstrained” manner during rest or is “constrained” by task demands.

AB - Mind wandering (MW) has become a prominent topic of neuroscientific investigation due to the importance of understanding attentional processes in our day-to-day experiences. Emerging evidence suggests a critical role for three large-scale brain networks in MW: the default network (DN), the central executive network (CEN), and the salience network (SN). Advances in analytical methods for neuroimaging data (i.e., dynamic functional connectivity, DFC) demonstrate that the interactions between these networks are not static but dynamically fluctuate over time (Chang & Glover, 2010, NeuroImage, 50(1), 81–98). While the bulk of the evidence comes from studies involving resting-state functional MRI, a few studies have investigated DFC during a task. Direct comparison of DFC during rest and task with frequent MW is scarce. The present study applies the DFC method to neuroimaging data collected from 30 participants who completed a resting-state run followed by two runs of sustained attention to response task (SART) with embedded probes indicating a high prevalence of MW. The analysis identified five DFC states. Differences between rest and task were noted in the frequency of three DFC states. One DFC state characterized by negative DN–CEN/SN connectivity along with positive CEN–SN connectivity was more frequently observed during task vs. rest. Two DFC states, one of which was characterized by weaker connectivity between networks, were more frequently observed during rest than task. These findings suggest that the dynamic relationships between brain networks may vary as a function of whether ongoing cognitive activity unfolds in an “unconstrained” manner during rest or is “constrained” by task demands.

KW - dynamic functional connectivity

KW - self-generated thoughts

KW - sustained attention

KW - unconstrained mind wandering

UR - http://www.scopus.com/inward/record.url?scp=85070491175&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85070491175&partnerID=8YFLogxK

U2 - 10.1002/hbm.24721

DO - 10.1002/hbm.24721

M3 - Article

C2 - 31379120

AN - SCOPUS:85070491175

JO - Human Brain Mapping

JF - Human Brain Mapping

SN - 1065-9471

ER -