Dual-Task Gait Assessment and Machine Learning for Early-detection of Cognitive Decline

Lillian N. Boettcher, Murtadha Hssayeni, Amie Rosenfeld, Magdalena I. Tolea, James E. Galvin, Behnaz Ghoraani

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Alzheimer's disease (AD) affects approximately 30 million people worldwide, and this number is predicted to triple by 2050 unless further discoveries facilitate the early detection and prevention of the disease. Computerized walkways for simultaneous assessment of motor-cognitive performance, known as a dual-task assessment, has been used to associate changes in gait characteristics to mild cognitive impairment (MCI) with early-stage disease. However, to our best knowledge, there is no validated method to detect MCI using the collective analysis of these gait characteristics. In this paper, we develop a machine learning approach to analyze the gait data from the dual-task assessment in order to detect subjects with cognitive impairment from healthy individuals. We collected dual-task gait data from a computerized walkway of a total of 92 subjects with 31 healthy control (HC) and 61 MCI. Using support vector machine (SVM) and gradient tree boosting, we developed a classifier to differentiate MCI from HC subjects and compared the results with a paper-based questionnaire assessment that has been commonly used in clinical practice. SVM provided the highest accuracy of 77.17% with 81.97% sensitivity and 67.74% specificity. Our results indicate the potential of machine learning + dual-task assessment to enable early diagnosis of cognitive decline before it advances to dementia and AD, so that early intervention or prevention strategies can be initiated.

Original languageEnglish (US)
Title of host publication42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationEnabling Innovative Technologies for Global Healthcare, EMBC 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3204-3207
Number of pages4
ISBN (Electronic)9781728119908
DOIs
StatePublished - Jul 2020
Event42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020 - Montreal, Canada
Duration: Jul 20 2020Jul 24 2020

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2020-July
ISSN (Print)1557-170X

Conference

Conference42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020
Country/TerritoryCanada
CityMontreal
Period7/20/207/24/20

Keywords

  • Alzheimer's Disease
  • Cognitive Impairment
  • Dementia
  • Dual-Task Assessment
  • Gait Performance
  • gradient tree boosting
  • Support Vector Machine

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Dual-Task Gait Assessment and Machine Learning for Early-detection of Cognitive Decline'. Together they form a unique fingerprint.

Cite this