Downregulation of sodium channels during anoxia: A putative survival strategy of turtle brain

M. A. Perez-Pinzon, M. Rosenthal, T. J. Sick, P. L. Lutz, J. Pablo, D. Mash

Research output: Contribution to journalArticlepeer-review

122 Scopus citations


In contrast to mammalian brain, which exhibits rapid degeneration during anoxia, the brains of certain species of turtles show an extraordinary capacity to survive prolonged anoxia. The decrease in energy expenditure shown by the anoxic turtle brain is likely to be a key factor for anoxic survival. The 'channel arrest' hypothesis proposes that ion channels, which regulate brain electrical activity in normoxia, may be altered during anoxia in the turtle brain as a mechanism to spare energy. Goals of present research were to test this hypothesis and to determine whether downregulation of sodium channels is a possible explanation for spike threshold shifts seen during anoxia in isolated turtle cerebellum. We report here that anoxia induced a significant (42%) decline in voltage-gated sodium channel density as determined by studies of the binding of a sodium channel ligand, [3H]brevetoxin. This study demonstrates that sodium channel densities in brain may be regulated by tissue oxygenation or by physiological events associated with anoxia. Moreover, it also suggests that downregulation of sodium channels may be a basis for changes in action potential thresholds, the electrical depression and energy conservation that provide the unique anoxic tolerance of turtle brain.

Original languageEnglish (US)
Pages (from-to)R712-R715
JournalAmerican Journal of Physiology - Regulatory Integrative and Comparative Physiology
Issue number4 31-4
StatePublished - 1992


  • [H]brevetoxin
  • channel arrest

ASJC Scopus subject areas

  • Physiology


Dive into the research topics of 'Downregulation of sodium channels during anoxia: A putative survival strategy of turtle brain'. Together they form a unique fingerprint.

Cite this