Downregulation of cytoplasmic DNases is implicated in cytoplasmic DNA accumulation and SASP in senescent cells

Akiko Takahashi, Tze Mun Loo, Ryo Okada, Fumitaka Kamachi, Yoshihiro Watanabe, Masahiro Wakita, Sugiko Watanabe, Shimpei Kawamoto, Kenichi Miyata, Glen N. Barber, Naoko Ohtani, Eiji Hara

Research output: Contribution to journalArticlepeer-review

123 Scopus citations


Accumulating evidence indicates that the senescence-associated secretory phenotype (SASP) contributes to many aspects of physiology and disease. Thus, controlling the SASP will have tremendous impacts on our health. However, our understanding of SASP regulation is far from complete. Here, we show that cytoplasmic accumulation of nuclear DNA plays key roles in the onset of SASP. Although both DNase2 and TREX1 rapidly remove the cytoplasmic DNA fragments emanating from the nucleus in pre-senescent cells, the expression of these DNases is downregulated in senescent cells, resulting in the cytoplasmic accumulation of nuclear DNA. This causes the aberrant activation of cGAS-STING cytoplasmic DNA sensors, provoking SASP through induction of interferon-β. Notably, the blockage of this pathway prevents SASP in senescent hepatic stellate cells, accompanied by a decline of obesity-associated hepatocellular carcinoma development in mice. These findings provide valuable new insights into the roles and mechanisms of SASP and possibilities for their control.

Original languageEnglish (US)
Article number1249
JournalNature communications
Issue number1
StatePublished - Dec 1 2018

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)


Dive into the research topics of 'Downregulation of cytoplasmic DNases is implicated in cytoplasmic DNA accumulation and SASP in senescent cells'. Together they form a unique fingerprint.

Cite this