Does ammonia trigger hyperventilation in the elasmobranch, Squalus acanthias suckleyi?

Gudrun De Boeck, Chris M. Wood

Research output: Contribution to journalArticlepeer-review

11 Scopus citations


We examined the ventilatory response of the spiny dogfish, to elevated internal or environmental ammonia. Sharks were injected via arterial catheters with ammonia solutions or their Na salt equivalents sufficient to increase plasma total ammonia concentration [TAmm]a by 3-5 fold from 145±21μM to 447±150μM using NH4HCO3 and a maximum of 766±100μM using (NH4)2SO4. (NH4)2SO4 caused a small increase in ventilation frequency (+14%) and a large increase in amplitude (+69%), while Na2SO4 did not. However, CO2 partial pressure (PaCO2) also increased and arterial pHa and plasma bicarbonate concentration ([HCO3-]a) decreased. NH4HCO3 caused a smaller increase in plasma ammonia resulting in a smaller but significant, short lived increases in ventilation frequency (+6%) and amplitude (36%), together with a rise in PaCO2 and [HCO3-]a. Injection with NaHCO3 which increased pHa and [HCO3-]a did not change ventilation. Plasma ammonia concentration correlated significantly with ventilation amplitude, while ventilation frequency showed a (negative) correlation with pHa. Exposure to high environmental ammonia (1500μM NH4HCO3) did not induce changes in ventilation until plasma [TAmm]a increased and ventilation amplitude (but not frequency) increased in parallel. We conclude that internal ammonia stimulates ventilation in spiny dogfish, especially amplitude or stroke volume, while environmental ammonia only stimulates ventilation after ammonia diffuses into the bloodstream.

Original languageEnglish (US)
Pages (from-to)25-35
Number of pages11
JournalRespiratory Physiology and Neurobiology
StatePublished - Jan 5 2015


  • Ammonia
  • Dogfish
  • Respiration
  • Respiratory gas
  • Shark
  • Ventilation

ASJC Scopus subject areas

  • Physiology
  • Pulmonary and Respiratory Medicine
  • Neuroscience(all)


Dive into the research topics of 'Does ammonia trigger hyperventilation in the elasmobranch, Squalus acanthias suckleyi?'. Together they form a unique fingerprint.

Cite this