Abstract
Under endoplasmic reticulum stress, unfolded protein accumulation leads to activation of the endoplasmic reticulum transmembrane kinase/endoRNase (RNase) IRE1α. IRE1α oligomerizes, autophosphorylates and initiates splicing of XBP1 mRNA, thus triggering the unfolded protein response (UPR). Here we show that IRE1α's kinase-controlled RNase can be regulated in two distinct modes with kinase inhibitors: one class of ligands occupies IRE1α's kinase ATP-binding site to activate RNase-mediated XBP1 mRNA splicing even without upstream endoplasmic reticulum stress, whereas a second class can inhibit the RNase through the same ATP-binding site, even under endoplasmic reticulum stress. Thus, alternative kinase conformations stabilized by distinct classes of ATP-competitive inhibitors can cause allosteric switching of IRE1α's RNase - either on or off. As dysregulation of the UPR has been implicated in a variety of cell degenerative and neoplastic disorders, small-molecule control over IRE1α should advance efforts to understand the UPR's role in pathophysiology and to develop drugs for endoplasmic reticulum stress-related diseases.
Original language | English (US) |
---|---|
Pages (from-to) | 982-989 |
Number of pages | 8 |
Journal | Nature Chemical Biology |
Volume | 8 |
Issue number | 12 |
DOIs | |
State | Published - Dec 2012 |
ASJC Scopus subject areas
- Molecular Biology
- Cell Biology