Differential regulation of Interleukin-1 Receptor-associated Kinase-1 (IRAK-1) and IRAK-2 by microRNA-146a and NF-κB in stressed human astroglial cells and in Alzheimer disease

Jian Guo Cui, Yuan Yuan Li, Yuhai Zhao, Surjyadipta Bhattacharjee, Walter J. Lukiw

Research output: Contribution to journalArticle

162 Citations (Scopus)

Abstract

Specific microRNAs (miRNAs), small non-coding RNAs that support homeostatic gene expression, are significantly altered in abundance in human neurological disorders. In monocytes, increased expression of an NF-κB-regulated miRNA-146a down-regulates expression of the interleukin-1 receptor-associated kinase-1 (IRAK-1), an essential component of Toll-like/ IL-1 receptor signaling. Here we extend those observations to the hippocampus and neocortex of Alzheimer disease (AD) brain and to stressed human astroglial (HAG) cells in primary culture. In 66 control and AD samples we note a significant up-regulation of miRNA-146a coupled to down-regulation of IRAK-1 and a compensatory up-regulation of IRAK-2. Using miRNA-146a-, IRAK-1-, or IRAK-2 promoter-luciferase reporter constructs, we observe decreases in IRAK-1 and increases in miRNA-146a and IRAK-2 expression in interleukin-1β(IL-1β) and amyloid-β-42 (Aβ42) peptide-stressed HAG cells. NF-κB-mediated transcriptional control of human IRAK-2 was localized to between -119 and +12 bp of the immediate IRAK-2 promoter. The NF-κB inhibitors curcumin, pyrrolidine dithiocarbamate or CAY10512 abrogated both IRAK-2 and miRNA-146a expression, whereas IRAK-1 was up-regulated. Incubation of a protected antisense miRNA-146a was found to inhibit miRNA-146a and restore IRAK-1, whereas IRAK-2 remained unaffected. These data suggest a significantly independent regulation of IRAK-1 and IRAK-2 in AD and in IL-1β+Aβ42 peptide-stressed HAG cells and that an inducible, NF-κB-sensitive, miRNA-146a-mediated down-regulation of IRAK-1 coupled to an NF-κB-induced up-regulation of IRAK-2 expression drives an extensively sustained inflammatory response. The interactive signaling of NF-κB and miRNA-146a further illustrate interplay between inducible transcription factors and pro-inflammatory miRNAs that regulate brain IRAK expression. The combinatorial use of NF-κB inhibitors with miRNA-146a or antisense miRNA-146a may have potential as a bi-pronged therapeutic strategy directed against IRAK-2-driven pathogenic signaling.

Original languageEnglish
Pages (from-to)38951-38960
Number of pages10
JournalJournal of Biological Chemistry
Volume285
Issue number50
DOIs
StatePublished - Dec 10 2010

Fingerprint

Interleukin-1 Receptor-Associated Kinases
MicroRNAs
Alzheimer Disease
Up-Regulation
Down-Regulation
Interleukin-1
Amyloid
Brain
Small Untranslated RNA
Peptides
Curcumin
Primary Cell Culture
Interleukin-1 Receptors
Neocortex
Nervous System Diseases

ASJC Scopus subject areas

  • Biochemistry
  • Cell Biology
  • Molecular Biology

Cite this

Differential regulation of Interleukin-1 Receptor-associated Kinase-1 (IRAK-1) and IRAK-2 by microRNA-146a and NF-κB in stressed human astroglial cells and in Alzheimer disease. / Cui, Jian Guo; Li, Yuan Yuan; Zhao, Yuhai; Bhattacharjee, Surjyadipta; Lukiw, Walter J.

In: Journal of Biological Chemistry, Vol. 285, No. 50, 10.12.2010, p. 38951-38960.

Research output: Contribution to journalArticle

Cui, Jian Guo ; Li, Yuan Yuan ; Zhao, Yuhai ; Bhattacharjee, Surjyadipta ; Lukiw, Walter J. / Differential regulation of Interleukin-1 Receptor-associated Kinase-1 (IRAK-1) and IRAK-2 by microRNA-146a and NF-κB in stressed human astroglial cells and in Alzheimer disease. In: Journal of Biological Chemistry. 2010 ; Vol. 285, No. 50. pp. 38951-38960.
@article{531a5fa1fd9d4b668394ac2513effbe1,
title = "Differential regulation of Interleukin-1 Receptor-associated Kinase-1 (IRAK-1) and IRAK-2 by microRNA-146a and NF-κB in stressed human astroglial cells and in Alzheimer disease",
abstract = "Specific microRNAs (miRNAs), small non-coding RNAs that support homeostatic gene expression, are significantly altered in abundance in human neurological disorders. In monocytes, increased expression of an NF-κB-regulated miRNA-146a down-regulates expression of the interleukin-1 receptor-associated kinase-1 (IRAK-1), an essential component of Toll-like/ IL-1 receptor signaling. Here we extend those observations to the hippocampus and neocortex of Alzheimer disease (AD) brain and to stressed human astroglial (HAG) cells in primary culture. In 66 control and AD samples we note a significant up-regulation of miRNA-146a coupled to down-regulation of IRAK-1 and a compensatory up-regulation of IRAK-2. Using miRNA-146a-, IRAK-1-, or IRAK-2 promoter-luciferase reporter constructs, we observe decreases in IRAK-1 and increases in miRNA-146a and IRAK-2 expression in interleukin-1β(IL-1β) and amyloid-β-42 (Aβ42) peptide-stressed HAG cells. NF-κB-mediated transcriptional control of human IRAK-2 was localized to between -119 and +12 bp of the immediate IRAK-2 promoter. The NF-κB inhibitors curcumin, pyrrolidine dithiocarbamate or CAY10512 abrogated both IRAK-2 and miRNA-146a expression, whereas IRAK-1 was up-regulated. Incubation of a protected antisense miRNA-146a was found to inhibit miRNA-146a and restore IRAK-1, whereas IRAK-2 remained unaffected. These data suggest a significantly independent regulation of IRAK-1 and IRAK-2 in AD and in IL-1β+Aβ42 peptide-stressed HAG cells and that an inducible, NF-κB-sensitive, miRNA-146a-mediated down-regulation of IRAK-1 coupled to an NF-κB-induced up-regulation of IRAK-2 expression drives an extensively sustained inflammatory response. The interactive signaling of NF-κB and miRNA-146a further illustrate interplay between inducible transcription factors and pro-inflammatory miRNAs that regulate brain IRAK expression. The combinatorial use of NF-κB inhibitors with miRNA-146a or antisense miRNA-146a may have potential as a bi-pronged therapeutic strategy directed against IRAK-2-driven pathogenic signaling.",
author = "Cui, {Jian Guo} and Li, {Yuan Yuan} and Yuhai Zhao and Surjyadipta Bhattacharjee and Lukiw, {Walter J.}",
year = "2010",
month = "12",
day = "10",
doi = "10.1074/jbc.M110.178848",
language = "English",
volume = "285",
pages = "38951--38960",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "50",

}

TY - JOUR

T1 - Differential regulation of Interleukin-1 Receptor-associated Kinase-1 (IRAK-1) and IRAK-2 by microRNA-146a and NF-κB in stressed human astroglial cells and in Alzheimer disease

AU - Cui, Jian Guo

AU - Li, Yuan Yuan

AU - Zhao, Yuhai

AU - Bhattacharjee, Surjyadipta

AU - Lukiw, Walter J.

PY - 2010/12/10

Y1 - 2010/12/10

N2 - Specific microRNAs (miRNAs), small non-coding RNAs that support homeostatic gene expression, are significantly altered in abundance in human neurological disorders. In monocytes, increased expression of an NF-κB-regulated miRNA-146a down-regulates expression of the interleukin-1 receptor-associated kinase-1 (IRAK-1), an essential component of Toll-like/ IL-1 receptor signaling. Here we extend those observations to the hippocampus and neocortex of Alzheimer disease (AD) brain and to stressed human astroglial (HAG) cells in primary culture. In 66 control and AD samples we note a significant up-regulation of miRNA-146a coupled to down-regulation of IRAK-1 and a compensatory up-regulation of IRAK-2. Using miRNA-146a-, IRAK-1-, or IRAK-2 promoter-luciferase reporter constructs, we observe decreases in IRAK-1 and increases in miRNA-146a and IRAK-2 expression in interleukin-1β(IL-1β) and amyloid-β-42 (Aβ42) peptide-stressed HAG cells. NF-κB-mediated transcriptional control of human IRAK-2 was localized to between -119 and +12 bp of the immediate IRAK-2 promoter. The NF-κB inhibitors curcumin, pyrrolidine dithiocarbamate or CAY10512 abrogated both IRAK-2 and miRNA-146a expression, whereas IRAK-1 was up-regulated. Incubation of a protected antisense miRNA-146a was found to inhibit miRNA-146a and restore IRAK-1, whereas IRAK-2 remained unaffected. These data suggest a significantly independent regulation of IRAK-1 and IRAK-2 in AD and in IL-1β+Aβ42 peptide-stressed HAG cells and that an inducible, NF-κB-sensitive, miRNA-146a-mediated down-regulation of IRAK-1 coupled to an NF-κB-induced up-regulation of IRAK-2 expression drives an extensively sustained inflammatory response. The interactive signaling of NF-κB and miRNA-146a further illustrate interplay between inducible transcription factors and pro-inflammatory miRNAs that regulate brain IRAK expression. The combinatorial use of NF-κB inhibitors with miRNA-146a or antisense miRNA-146a may have potential as a bi-pronged therapeutic strategy directed against IRAK-2-driven pathogenic signaling.

AB - Specific microRNAs (miRNAs), small non-coding RNAs that support homeostatic gene expression, are significantly altered in abundance in human neurological disorders. In monocytes, increased expression of an NF-κB-regulated miRNA-146a down-regulates expression of the interleukin-1 receptor-associated kinase-1 (IRAK-1), an essential component of Toll-like/ IL-1 receptor signaling. Here we extend those observations to the hippocampus and neocortex of Alzheimer disease (AD) brain and to stressed human astroglial (HAG) cells in primary culture. In 66 control and AD samples we note a significant up-regulation of miRNA-146a coupled to down-regulation of IRAK-1 and a compensatory up-regulation of IRAK-2. Using miRNA-146a-, IRAK-1-, or IRAK-2 promoter-luciferase reporter constructs, we observe decreases in IRAK-1 and increases in miRNA-146a and IRAK-2 expression in interleukin-1β(IL-1β) and amyloid-β-42 (Aβ42) peptide-stressed HAG cells. NF-κB-mediated transcriptional control of human IRAK-2 was localized to between -119 and +12 bp of the immediate IRAK-2 promoter. The NF-κB inhibitors curcumin, pyrrolidine dithiocarbamate or CAY10512 abrogated both IRAK-2 and miRNA-146a expression, whereas IRAK-1 was up-regulated. Incubation of a protected antisense miRNA-146a was found to inhibit miRNA-146a and restore IRAK-1, whereas IRAK-2 remained unaffected. These data suggest a significantly independent regulation of IRAK-1 and IRAK-2 in AD and in IL-1β+Aβ42 peptide-stressed HAG cells and that an inducible, NF-κB-sensitive, miRNA-146a-mediated down-regulation of IRAK-1 coupled to an NF-κB-induced up-regulation of IRAK-2 expression drives an extensively sustained inflammatory response. The interactive signaling of NF-κB and miRNA-146a further illustrate interplay between inducible transcription factors and pro-inflammatory miRNAs that regulate brain IRAK expression. The combinatorial use of NF-κB inhibitors with miRNA-146a or antisense miRNA-146a may have potential as a bi-pronged therapeutic strategy directed against IRAK-2-driven pathogenic signaling.

UR - http://www.scopus.com/inward/record.url?scp=78649863208&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=78649863208&partnerID=8YFLogxK

U2 - 10.1074/jbc.M110.178848

DO - 10.1074/jbc.M110.178848

M3 - Article

C2 - 20937840

AN - SCOPUS:78649863208

VL - 285

SP - 38951

EP - 38960

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 50

ER -