Differential handling of urea and its analogues suggests carrier-mediated urea excretion in freshwater rainbow trout

M. Danielle McDonald, Chris M. Wood

Research output: Contribution to journalArticle

8 Scopus citations

Abstract

The possible presence of urea transport mechanisms in the gill and kidney of the freshwater rainbow trout (Oncorhynchus mykiss) was investigated in vivo by comparing the branchial and renal handling of analogues acetamide and thiourea with the handling of urea. Trout were fitted with indwelling dorsal aortic catheters and urinary catheters and injected with an isosmotic dose of [14C]-labeled urea analogue (acetamide or thiourea) calculated to bring plasma analogue concentrations close to plasma urea concentrations. Urea and analogue concentrations were significantly greater in the urine than in the plasma. Branchial clearance rate of acetamide was only 48% of urea clearance, whereas the clearance of thiourea was only 22%, a pattern that was also observed in branchial uptake of these substances and was similar to our previous observations in toadfish and midshipmen. The renal secretion clearance rates of urea and acetamide were similar, and on average, both substances were secreted on a net basis, although reabsorption did occur in some cases. In contrast, thiourea was neither reabsorbed nor secreted by the kidney tubule. The secretion clearance rates of both acetamide and urea were well correlated with the secretion clearance rates of Na+, Cl-, and water, whereas there was no relationship between thiourea and these substances. The pattern of acetamide, thiourea, and urea handling by the gill of the trout is similar to that found in the gills of the midshipman and the gulf toadfish and strongly suggests the presence of a UT-type facilitated diffusion urea transport mechanism. The pattern of differential handling in the kidney is unlike that in the gill and also unlike that in the kidney of the midshipman and the gulf toadfish, suggesting a different mechanism. In addition, renal urea secretion occurs against a concentration gradient, suggesting the involvement of an active transport mechanism.

Original languageEnglish (US)
Pages (from-to)791-802
Number of pages12
JournalPhysiological and Biochemical Zoology
Volume76
Issue number6
DOIs
StatePublished - Nov 1 2003

    Fingerprint

ASJC Scopus subject areas

  • Physiology
  • Biochemistry
  • Animal Science and Zoology

Cite this