TY - JOUR
T1 - Differential effect of left vs. right white matter hyperintensity burden on functional decline
T2 - The Northern Manhattan study
AU - Dhamoon, Mandip S.
AU - Cheung, Ying Kuen
AU - Bagci, Ahmet
AU - Alperin, Noam
AU - Sacco, Ralph L.
AU - Elkind, Mitchell S.V.
AU - Wright, Clinton B.
PY - 2017/9/20
Y1 - 2017/9/20
N2 - Asymmetry of brain dysfunction may disrupt brain network efficiency. We hypothesized that greater left-right white matter hyperintensity volume (WMHV) asymmetry was associated with functional trajectories. Methods: In the Northern Manhattan Study, participants underwent brain MRI with axial T1, T2, and fluid attenuated inversion recovery sequences, with baseline interview and examination. Volumetric WMHV distribution across 14 brain regions was determined separately by combining bimodal image intensity distribution and atlas based methods. Participants had annual functional assessments with the Barthel index (BI, range 0-100) over a mean of 7.3 years. Generalized estimating equations (GEE) models estimated associations of regional WMHV and regional left-right asymmetry with baseline BI and change over time, adjusted for baseline medical risk factors, sociodemographics, and cognition, and stroke and myocardial infarction during follow-up. Results: Among 1,195 participants, greater WMHV asymmetry in the parietal lobes (-8.46 BI points per unit greater WMHV on the right compared to left, 95% CI -3.07, -13.86) and temporal lobes (-2.48 BI points, 95% CI -1.04, -3.93) was associated with lower overall function. Greater WMHV asymmetry in the parietal lobes (-1.09 additional BI points per year per unit greater WMHV on the left compared to right, 95% CI -1.89, -0.28) was independently associated with accelerated functional decline. Conclusions: In this large population-based study with long-term repeated measures of function, greater regional WMHV asymmetry was associated with lower function and functional decline. In addition to global WMHV, WHMV asymmetry may be an important predictor of long-term functional status.
AB - Asymmetry of brain dysfunction may disrupt brain network efficiency. We hypothesized that greater left-right white matter hyperintensity volume (WMHV) asymmetry was associated with functional trajectories. Methods: In the Northern Manhattan Study, participants underwent brain MRI with axial T1, T2, and fluid attenuated inversion recovery sequences, with baseline interview and examination. Volumetric WMHV distribution across 14 brain regions was determined separately by combining bimodal image intensity distribution and atlas based methods. Participants had annual functional assessments with the Barthel index (BI, range 0-100) over a mean of 7.3 years. Generalized estimating equations (GEE) models estimated associations of regional WMHV and regional left-right asymmetry with baseline BI and change over time, adjusted for baseline medical risk factors, sociodemographics, and cognition, and stroke and myocardial infarction during follow-up. Results: Among 1,195 participants, greater WMHV asymmetry in the parietal lobes (-8.46 BI points per unit greater WMHV on the right compared to left, 95% CI -3.07, -13.86) and temporal lobes (-2.48 BI points, 95% CI -1.04, -3.93) was associated with lower overall function. Greater WMHV asymmetry in the parietal lobes (-1.09 additional BI points per year per unit greater WMHV on the left compared to right, 95% CI -1.89, -0.28) was independently associated with accelerated functional decline. Conclusions: In this large population-based study with long-term repeated measures of function, greater regional WMHV asymmetry was associated with lower function and functional decline. In addition to global WMHV, WHMV asymmetry may be an important predictor of long-term functional status.
KW - Disability
KW - MRI and fMRI
KW - Subclinical ischemia
KW - Trajectory
KW - White matter hyperintensities
UR - http://www.scopus.com/inward/record.url?scp=85030180421&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85030180421&partnerID=8YFLogxK
U2 - 10.3389/fnagi.2017.00305
DO - 10.3389/fnagi.2017.00305
M3 - Article
AN - SCOPUS:85030180421
VL - 9
JO - Frontiers in Aging Neuroscience
JF - Frontiers in Aging Neuroscience
SN - 1663-4365
IS - SEP
M1 - 305
ER -