Development of a bench scale method for constant output of mineral dust

Dhruv Mitroo, Thomas E. Gill, Savannah Haas, Kerri A. Pratt, Cassandra J. Gaston

Research output: Contribution to journalArticlepeer-review

Abstract

To realize the environmental impacts of mineral dust from different sources, it is necessary to develop aerosol generation systems that can mimic the processes of aerosolization of sediments into dusts under controlled laboratory settings. Current laboratory dust generation systems would benefit from a critical evaluation of the mechanisms by which they generate dust beyond mere resuspension to include natural eolian processes such as saltation/sandblasting. Without realistically generated aerosols, laboratory-measured dust properties may not capture properties relevant to the natural environment. We describe the development of a benchtop system, the Constant Output Dust Generator (CODG), whose design takes into account the dominant natural physical processes of wind erosion and mineral dust production. The CODG’s major components include a wrist-action shaker, custom-built flask, dilution drum, cyclone, and neutralizer. A carrier gas provides flow through the system resulting in dust entrainment. We achieved constant output, typically <10% variation in aerosol surface area concentration, for both a commercial standard as well as environmental samples (saline crusts and loose sediments). We find that the composition of aerosols generated from the CODG is consistent with the composition of the parent source material. We further show that our system is suitable for determination of reaction rates on suspended dust aerosols. At similar mechanical energy inputs, it generates sufficient material (particle surface area concentrations between 10−5 − 10−3 cm2 cm−3) for many applications from both loose sandy sediment and cohesive evaporite crusts. The CODG represents a system potentially applicable for numerous applications of dust aerosol research.

Original languageEnglish (US)
JournalAerosol Science and Technology
DOIs
StateAccepted/In press - 2021

ASJC Scopus subject areas

  • Environmental Chemistry
  • Materials Science(all)
  • Pollution

Fingerprint Dive into the research topics of 'Development of a bench scale method for constant output of mineral dust'. Together they form a unique fingerprint.

Cite this