Abstract
The minority game (MG) behaves as a stochastically disturbed deterministic system due to the coin toss invoked to resolve tied strategies. Averaging over this stochasticity yields a description of the MG’s deterministic dynamics via mapping equations for the strategy score and global information. The strategy-score map contains both restoring-force and bias terms, whose magnitudes depend on the game’s quenched disorder. Approximate analytical expressions are obtained and the effect of “market impact” is discussed. The global-information map represents a trajectory on a de Bruijn graph. For small quenched disorder, a Eulerian trail represents a stable attractor. It is shown analytically how antipersistence arises. The response to perturbations and different initial conditions is also discussed.
Original language | English (US) |
---|---|
Journal | Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics |
Volume | 65 |
Issue number | 1 |
DOIs | |
State | Published - 2002 |
ASJC Scopus subject areas
- Statistical and Nonlinear Physics
- Statistics and Probability
- Condensed Matter Physics