Abstract
We report a neural microelectrode array design that leverages the recording properties of conventional microwire electrode arrays with the additional features of precise control of the electrode geometries. Using microfabrication techniques, a neural probe array is fabricated that possesses a flexible polyimide-based cable. The performance of the design was tested with electrochemical impedance spectroscopy and in vivo studies. The gold-plated electrode site has an impedance value of 0.9 M Omega at 1 kHz. Acute neural recording provided high neuronal yields, peak-to-peak amplitudes (as high as 100 microV), and signal-to-noise ratios (27 dB).
Original language | English |
---|---|
Pages (from-to) | 2966-2969 |
Number of pages | 4 |
Journal | Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference |
State | Published - Dec 1 2006 |
Externally published | Yes |
ASJC Scopus subject areas
- Computer Vision and Pattern Recognition
- Signal Processing
- Biomedical Engineering
- Health Informatics