TY - JOUR
T1 - Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo
AU - Boczkowski, David
AU - Nair, Smita K.
AU - Snyder, David
AU - Gilboa, Eli
N1 - Copyright:
Copyright 2018 Elsevier B.V., All rights reserved.
PY - 1996/8/1
Y1 - 1996/8/1
N2 - Immunization with defined tumor antigens is currently limited to a small number of cancers where candidates for tumor rejection antigens have been identified. In this study we investigated whether pulsing dendritic cells (DC) with tumor-derived RNA is an effective way to induce CTL and tumor immunity. DC pulsed with in vitro synthesized chicken ovalbumin (OVA) RNA were more effective than OVA peptide-pulsed DC in stimulating primary, OVA- specific CTL responses in vitro. DC pulsed with unfractionated RNA (total or polyA+) from OVA-expressing tumor cells were as effective as DC pulsed with OVA peptide at stimulating CTL responses. Induction of OVA-specific CTL was abrogated when polyA+ RNA from OVA-expressing cells was treated with an OVA- specific antisense oligodeoxynucleotide and RNAse H, showing that sensitization of DC was indeed mediated by OVA RNA. Mice vaccinated with DC pulsed with RNA from OVA-expressing tumor cells were protected against a challenge with OVA-expressing tumor cells. In the poorly immunogenic, highly metastatic, B16/F10.9 tumor model a dramatic reduction in lung metastases was observed in mice vaccinated with DC pulsed with tumor-derived RNA (total or polyA+, but not polyA RNA). The finding that RNA transcribed in vitro from cDNA cloned in a bacterial plasmid was highly effective in sensitizing DC shows that amplification of the antigenic content from a small number of tumor cells is feasible, thus expanding the potential use of RNA-pulsed DC- based vaccines for patients bearing very small, possibly microscopic, tumors.
AB - Immunization with defined tumor antigens is currently limited to a small number of cancers where candidates for tumor rejection antigens have been identified. In this study we investigated whether pulsing dendritic cells (DC) with tumor-derived RNA is an effective way to induce CTL and tumor immunity. DC pulsed with in vitro synthesized chicken ovalbumin (OVA) RNA were more effective than OVA peptide-pulsed DC in stimulating primary, OVA- specific CTL responses in vitro. DC pulsed with unfractionated RNA (total or polyA+) from OVA-expressing tumor cells were as effective as DC pulsed with OVA peptide at stimulating CTL responses. Induction of OVA-specific CTL was abrogated when polyA+ RNA from OVA-expressing cells was treated with an OVA- specific antisense oligodeoxynucleotide and RNAse H, showing that sensitization of DC was indeed mediated by OVA RNA. Mice vaccinated with DC pulsed with RNA from OVA-expressing tumor cells were protected against a challenge with OVA-expressing tumor cells. In the poorly immunogenic, highly metastatic, B16/F10.9 tumor model a dramatic reduction in lung metastases was observed in mice vaccinated with DC pulsed with tumor-derived RNA (total or polyA+, but not polyA RNA). The finding that RNA transcribed in vitro from cDNA cloned in a bacterial plasmid was highly effective in sensitizing DC shows that amplification of the antigenic content from a small number of tumor cells is feasible, thus expanding the potential use of RNA-pulsed DC- based vaccines for patients bearing very small, possibly microscopic, tumors.
UR - http://www.scopus.com/inward/record.url?scp=0029839058&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0029839058&partnerID=8YFLogxK
U2 - 10.1084/jem.184.2.465
DO - 10.1084/jem.184.2.465
M3 - Article
C2 - 8760800
AN - SCOPUS:0029839058
VL - 184
SP - 465
EP - 472
JO - Journal of Experimental Medicine
JF - Journal of Experimental Medicine
SN - 0022-1007
IS - 2
ER -