Decreased spinothalamic and dorsal column medial lemniscus-mediated function is associated with neuropathic pain after spinal cord injury

Research output: Contribution to journalArticle

23 Citations (Scopus)

Abstract

Neuropathic pain (NP) after spinal cord injury (SCI) can significantly and negatively affect quality of life and is often refractory to currently available treatments. In order to find more effective therapeutic avenues, it would be helpful to identify the primary underlying pathophysiological mechanisms in each individual. The aim of the present study was to assess the relationship between the presence and severity of NP after SCI and measures of somatosensory function mediated via the dorsal column medial lemniscal (DCML) pathway and the spinothalamic tract (STT). Vibratory, mechanical, thermal, and pain thresholds measured in areas at and below the neurological level of injury (LOI) in persons with SCI and NP (SCI-NP, n=47) and in persons with SCI without NP (SCI-noNP, n=18) were normalized to data obtained from able-bodied pain-free control subjects (A-B, n=30). STT-mediated function at and below the LOI was significantly impaired in both SCI groups compared with A-B controls (p<0.001), but not significantly different between the two SCI groups (NP vs. no-NP). In contrast, the SCI-NP group had significantly greater impairment of DCML-mediated function at the LOI, as reflected by greater vibratory detection deficits (z=-3.89±0.5), compared with the SCI-noNP group (z=-1.95±0.7, p=0.034). Within the SCI-NP group, NP severity was significantly associated with increased thermal sensitivity below the LOI (r=0.50, p=0.038). Our results suggest that both impaired STT and DCML-mediated function are necessary for the development of NP after SCI. However, within the SCI-NP group, greater NP severity was associated with greater sensitivity to thermal stimuli below the LOI. This finding concurs with other studies suggesting that STT damage with some sparing is associated with NP.

Original languageEnglish
Pages (from-to)2706-2715
Number of pages10
JournalJournal of Neurotrauma
Volume29
Issue number17
DOIs
StatePublished - Nov 20 2012

Fingerprint

Neuralgia
Spinal Cord Injuries
Spinothalamic Tracts
Wounds and Injuries
Hot Temperature
Pain Threshold

Keywords

  • NP; pain measurement
  • pain threshold
  • SCI
  • sensory thresholds

ASJC Scopus subject areas

  • Clinical Neurology

Cite this

@article{7c8f59b1ac2841fd9930198562f199fd,
title = "Decreased spinothalamic and dorsal column medial lemniscus-mediated function is associated with neuropathic pain after spinal cord injury",
abstract = "Neuropathic pain (NP) after spinal cord injury (SCI) can significantly and negatively affect quality of life and is often refractory to currently available treatments. In order to find more effective therapeutic avenues, it would be helpful to identify the primary underlying pathophysiological mechanisms in each individual. The aim of the present study was to assess the relationship between the presence and severity of NP after SCI and measures of somatosensory function mediated via the dorsal column medial lemniscal (DCML) pathway and the spinothalamic tract (STT). Vibratory, mechanical, thermal, and pain thresholds measured in areas at and below the neurological level of injury (LOI) in persons with SCI and NP (SCI-NP, n=47) and in persons with SCI without NP (SCI-noNP, n=18) were normalized to data obtained from able-bodied pain-free control subjects (A-B, n=30). STT-mediated function at and below the LOI was significantly impaired in both SCI groups compared with A-B controls (p<0.001), but not significantly different between the two SCI groups (NP vs. no-NP). In contrast, the SCI-NP group had significantly greater impairment of DCML-mediated function at the LOI, as reflected by greater vibratory detection deficits (z=-3.89±0.5), compared with the SCI-noNP group (z=-1.95±0.7, p=0.034). Within the SCI-NP group, NP severity was significantly associated with increased thermal sensitivity below the LOI (r=0.50, p=0.038). Our results suggest that both impaired STT and DCML-mediated function are necessary for the development of NP after SCI. However, within the SCI-NP group, greater NP severity was associated with greater sensitivity to thermal stimuli below the LOI. This finding concurs with other studies suggesting that STT damage with some sparing is associated with NP.",
keywords = "NP; pain measurement, pain threshold, SCI, sensory thresholds",
author = "Yenisel Cruz-Almeida and Elizabeth Felix and Alberto Martinez-Arizala and Eva Widerstrom-Noga",
year = "2012",
month = "11",
day = "20",
doi = "10.1089/neu.2012.2343",
language = "English",
volume = "29",
pages = "2706--2715",
journal = "Journal of Neurotrauma",
issn = "0897-7151",
publisher = "Mary Ann Liebert Inc.",
number = "17",

}

TY - JOUR

T1 - Decreased spinothalamic and dorsal column medial lemniscus-mediated function is associated with neuropathic pain after spinal cord injury

AU - Cruz-Almeida, Yenisel

AU - Felix, Elizabeth

AU - Martinez-Arizala, Alberto

AU - Widerstrom-Noga, Eva

PY - 2012/11/20

Y1 - 2012/11/20

N2 - Neuropathic pain (NP) after spinal cord injury (SCI) can significantly and negatively affect quality of life and is often refractory to currently available treatments. In order to find more effective therapeutic avenues, it would be helpful to identify the primary underlying pathophysiological mechanisms in each individual. The aim of the present study was to assess the relationship between the presence and severity of NP after SCI and measures of somatosensory function mediated via the dorsal column medial lemniscal (DCML) pathway and the spinothalamic tract (STT). Vibratory, mechanical, thermal, and pain thresholds measured in areas at and below the neurological level of injury (LOI) in persons with SCI and NP (SCI-NP, n=47) and in persons with SCI without NP (SCI-noNP, n=18) were normalized to data obtained from able-bodied pain-free control subjects (A-B, n=30). STT-mediated function at and below the LOI was significantly impaired in both SCI groups compared with A-B controls (p<0.001), but not significantly different between the two SCI groups (NP vs. no-NP). In contrast, the SCI-NP group had significantly greater impairment of DCML-mediated function at the LOI, as reflected by greater vibratory detection deficits (z=-3.89±0.5), compared with the SCI-noNP group (z=-1.95±0.7, p=0.034). Within the SCI-NP group, NP severity was significantly associated with increased thermal sensitivity below the LOI (r=0.50, p=0.038). Our results suggest that both impaired STT and DCML-mediated function are necessary for the development of NP after SCI. However, within the SCI-NP group, greater NP severity was associated with greater sensitivity to thermal stimuli below the LOI. This finding concurs with other studies suggesting that STT damage with some sparing is associated with NP.

AB - Neuropathic pain (NP) after spinal cord injury (SCI) can significantly and negatively affect quality of life and is often refractory to currently available treatments. In order to find more effective therapeutic avenues, it would be helpful to identify the primary underlying pathophysiological mechanisms in each individual. The aim of the present study was to assess the relationship between the presence and severity of NP after SCI and measures of somatosensory function mediated via the dorsal column medial lemniscal (DCML) pathway and the spinothalamic tract (STT). Vibratory, mechanical, thermal, and pain thresholds measured in areas at and below the neurological level of injury (LOI) in persons with SCI and NP (SCI-NP, n=47) and in persons with SCI without NP (SCI-noNP, n=18) were normalized to data obtained from able-bodied pain-free control subjects (A-B, n=30). STT-mediated function at and below the LOI was significantly impaired in both SCI groups compared with A-B controls (p<0.001), but not significantly different between the two SCI groups (NP vs. no-NP). In contrast, the SCI-NP group had significantly greater impairment of DCML-mediated function at the LOI, as reflected by greater vibratory detection deficits (z=-3.89±0.5), compared with the SCI-noNP group (z=-1.95±0.7, p=0.034). Within the SCI-NP group, NP severity was significantly associated with increased thermal sensitivity below the LOI (r=0.50, p=0.038). Our results suggest that both impaired STT and DCML-mediated function are necessary for the development of NP after SCI. However, within the SCI-NP group, greater NP severity was associated with greater sensitivity to thermal stimuli below the LOI. This finding concurs with other studies suggesting that STT damage with some sparing is associated with NP.

KW - NP; pain measurement

KW - pain threshold

KW - SCI

KW - sensory thresholds

UR - http://www.scopus.com/inward/record.url?scp=84870535677&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84870535677&partnerID=8YFLogxK

U2 - 10.1089/neu.2012.2343

DO - 10.1089/neu.2012.2343

M3 - Article

C2 - 22845918

AN - SCOPUS:84870535677

VL - 29

SP - 2706

EP - 2715

JO - Journal of Neurotrauma

JF - Journal of Neurotrauma

SN - 0897-7151

IS - 17

ER -