Decellularization methods of porcine kidneys for whole organ engineering using a high-throughput system

David C. Sullivan, Sayed Hadi Mirmalek-Sani, Daniel B. Deegan, Pedro M. Baptista, Tamer Aboushwareb, Anthony Atala, James J. Yoo

Research output: Contribution to journalArticlepeer-review

268 Scopus citations


End-stage renal failure is a devastating disease, with donor organ transplantation as the only functional restorative treatment. The current number of donor organs meets less than one-fifth of demand, so regenerative medicine approaches have been proposed as potential therapeutic alternatives. One such approach for whole large-organ bioengineering is to combine functional renal cells with a decellularized porcine kidney scaffold. The efficacy of cellular removal and biocompatibility of the preserved porcine matrices, as well as scaffold reproducibility, are critical to the success of this approach. We evaluated the effectiveness of 0.25 and 0.5% sodium dodecyl sulfate (SDS) and 1% Triton X-100 in the decellularization of adult porcine kidneys. To perform the decellularization, a high-throughput system was designed and constructed. In this study all three methods examined showed significant cellular removal, but 0.5% SDS was the most effective detergent (<50 ng DNA/mg dry tissue). Decellularized organs retained intact microarchitecture including the renal vasculature and essential extracellular matrix components. The SDS-treated decellularized scaffolds were non-cytotoxic to primary human renal cells. This method ensures clearance of porcine cellular material (which directly impacts immunoreactivity during transplantation) and preserves the extracellular matrix and cellular compatibility of these renal scaffolds. Thus, we have developed a rapid decellularization method that can be scaled up for use in other large organs, and this represents a step toward development of a transplantable organ using tissue engineering techniques.

Original languageEnglish (US)
Pages (from-to)7756-7764
Number of pages9
Issue number31
StatePublished - Nov 2012


  • Acellular scaffolds
  • Biocompatibility
  • Decellularization
  • Kidney
  • Whole organ engineering

ASJC Scopus subject areas

  • Biomaterials
  • Bioengineering
  • Ceramics and Composites
  • Mechanics of Materials
  • Biophysics


Dive into the research topics of 'Decellularization methods of porcine kidneys for whole organ engineering using a high-throughput system'. Together they form a unique fingerprint.

Cite this