Cytosine methylation represses glutathione S-transferase P1 (GSTP1) gene expression in human prostate cancer cells

Rakesh Singal, J. Van Wert, M. Bashambu

Research output: Contribution to journalArticle

84 Citations (Scopus)

Abstract

Methylation of the glutathione S-transferase P1 (GSTP1) gene has been described as a highly specific and sensitive biomarker for prostate cancer. However, at present, it is not known whether methylation represses GSTP1 gene expression in human prostate cancer. We found the GSTP1 gene promoter to be completely methylated in the LNCaP prostate cancer cell line, where this gene is transcriptionally inactive. In contrast, Du145 and PC3 prostate cancer cells express the GSTP1 gene and exhibit methylated and unmethylated GSTP1 alleles. In a transient transfection assay using LNCaP cells, methylation of the GSTP1 promoter-driven luciferase reporter vector (GSTP1-pGL3) resulted in a >20-fold inhibition of transcription, and this repression was not relieved by the presence of a histone deacetylase inhibitor, trichostatin A (TSA). Treatment of LNCaP cells with a DNA methyltransferase inhibitor, 5-Aza-2′-deoxycytidine, resulted in demethylation and activation of the GSTP1 gene. In contrast, TSA treatment failed to demethylate or activate the GSTP1 gene. Fully methylated but not unmethylated GSTP1 promoter fragment was shown to bind to a complex similar to methyl cytosine-binding protein complex 1 that contains methyl-CpG-binding domain 2 protein (MBD2) in electrophoretic mobility shift assays using LNCaP cell nuclear extracts. These data demonstrate that cytosine methylation can repress GSTP1 gene expression in LNCaP prostate cancer cells and that this effect is possibly mediated by a methyl cytosine-binding protein complex 1-like complex. Furthermore, these data also support the notion of the dominance of methylation over TSA-sensitive histone deacetylation in silencing genes with a high CpG density in the promoter region.

Original languageEnglish
Pages (from-to)4820-4826
Number of pages7
JournalCancer Research
Volume61
Issue number12
StatePublished - Jun 15 2001
Externally publishedYes

Fingerprint

Cytosine
Glutathione Transferase
Methylation
Prostatic Neoplasms
Gene Expression
trichostatin A
Genes
decitabine
Carrier Proteins
Histone Deacetylase Inhibitors
Methyltransferases
Gene Silencing
Electrophoretic Mobility Shift Assay
Cell Extracts
Luciferases
Genetic Promoter Regions
Histones
Transfection
Biomarkers
Alleles

ASJC Scopus subject areas

  • Cancer Research
  • Oncology

Cite this

Cytosine methylation represses glutathione S-transferase P1 (GSTP1) gene expression in human prostate cancer cells. / Singal, Rakesh; Van Wert, J.; Bashambu, M.

In: Cancer Research, Vol. 61, No. 12, 15.06.2001, p. 4820-4826.

Research output: Contribution to journalArticle

@article{7961ecfa2e2a47ffb2c72c9880a27c7e,
title = "Cytosine methylation represses glutathione S-transferase P1 (GSTP1) gene expression in human prostate cancer cells",
abstract = "Methylation of the glutathione S-transferase P1 (GSTP1) gene has been described as a highly specific and sensitive biomarker for prostate cancer. However, at present, it is not known whether methylation represses GSTP1 gene expression in human prostate cancer. We found the GSTP1 gene promoter to be completely methylated in the LNCaP prostate cancer cell line, where this gene is transcriptionally inactive. In contrast, Du145 and PC3 prostate cancer cells express the GSTP1 gene and exhibit methylated and unmethylated GSTP1 alleles. In a transient transfection assay using LNCaP cells, methylation of the GSTP1 promoter-driven luciferase reporter vector (GSTP1-pGL3) resulted in a >20-fold inhibition of transcription, and this repression was not relieved by the presence of a histone deacetylase inhibitor, trichostatin A (TSA). Treatment of LNCaP cells with a DNA methyltransferase inhibitor, 5-Aza-2′-deoxycytidine, resulted in demethylation and activation of the GSTP1 gene. In contrast, TSA treatment failed to demethylate or activate the GSTP1 gene. Fully methylated but not unmethylated GSTP1 promoter fragment was shown to bind to a complex similar to methyl cytosine-binding protein complex 1 that contains methyl-CpG-binding domain 2 protein (MBD2) in electrophoretic mobility shift assays using LNCaP cell nuclear extracts. These data demonstrate that cytosine methylation can repress GSTP1 gene expression in LNCaP prostate cancer cells and that this effect is possibly mediated by a methyl cytosine-binding protein complex 1-like complex. Furthermore, these data also support the notion of the dominance of methylation over TSA-sensitive histone deacetylation in silencing genes with a high CpG density in the promoter region.",
author = "Rakesh Singal and {Van Wert}, J. and M. Bashambu",
year = "2001",
month = "6",
day = "15",
language = "English",
volume = "61",
pages = "4820--4826",
journal = "Journal of Cancer Research",
issn = "0099-7013",
publisher = "American Association for Cancer Research Inc.",
number = "12",

}

TY - JOUR

T1 - Cytosine methylation represses glutathione S-transferase P1 (GSTP1) gene expression in human prostate cancer cells

AU - Singal, Rakesh

AU - Van Wert, J.

AU - Bashambu, M.

PY - 2001/6/15

Y1 - 2001/6/15

N2 - Methylation of the glutathione S-transferase P1 (GSTP1) gene has been described as a highly specific and sensitive biomarker for prostate cancer. However, at present, it is not known whether methylation represses GSTP1 gene expression in human prostate cancer. We found the GSTP1 gene promoter to be completely methylated in the LNCaP prostate cancer cell line, where this gene is transcriptionally inactive. In contrast, Du145 and PC3 prostate cancer cells express the GSTP1 gene and exhibit methylated and unmethylated GSTP1 alleles. In a transient transfection assay using LNCaP cells, methylation of the GSTP1 promoter-driven luciferase reporter vector (GSTP1-pGL3) resulted in a >20-fold inhibition of transcription, and this repression was not relieved by the presence of a histone deacetylase inhibitor, trichostatin A (TSA). Treatment of LNCaP cells with a DNA methyltransferase inhibitor, 5-Aza-2′-deoxycytidine, resulted in demethylation and activation of the GSTP1 gene. In contrast, TSA treatment failed to demethylate or activate the GSTP1 gene. Fully methylated but not unmethylated GSTP1 promoter fragment was shown to bind to a complex similar to methyl cytosine-binding protein complex 1 that contains methyl-CpG-binding domain 2 protein (MBD2) in electrophoretic mobility shift assays using LNCaP cell nuclear extracts. These data demonstrate that cytosine methylation can repress GSTP1 gene expression in LNCaP prostate cancer cells and that this effect is possibly mediated by a methyl cytosine-binding protein complex 1-like complex. Furthermore, these data also support the notion of the dominance of methylation over TSA-sensitive histone deacetylation in silencing genes with a high CpG density in the promoter region.

AB - Methylation of the glutathione S-transferase P1 (GSTP1) gene has been described as a highly specific and sensitive biomarker for prostate cancer. However, at present, it is not known whether methylation represses GSTP1 gene expression in human prostate cancer. We found the GSTP1 gene promoter to be completely methylated in the LNCaP prostate cancer cell line, where this gene is transcriptionally inactive. In contrast, Du145 and PC3 prostate cancer cells express the GSTP1 gene and exhibit methylated and unmethylated GSTP1 alleles. In a transient transfection assay using LNCaP cells, methylation of the GSTP1 promoter-driven luciferase reporter vector (GSTP1-pGL3) resulted in a >20-fold inhibition of transcription, and this repression was not relieved by the presence of a histone deacetylase inhibitor, trichostatin A (TSA). Treatment of LNCaP cells with a DNA methyltransferase inhibitor, 5-Aza-2′-deoxycytidine, resulted in demethylation and activation of the GSTP1 gene. In contrast, TSA treatment failed to demethylate or activate the GSTP1 gene. Fully methylated but not unmethylated GSTP1 promoter fragment was shown to bind to a complex similar to methyl cytosine-binding protein complex 1 that contains methyl-CpG-binding domain 2 protein (MBD2) in electrophoretic mobility shift assays using LNCaP cell nuclear extracts. These data demonstrate that cytosine methylation can repress GSTP1 gene expression in LNCaP prostate cancer cells and that this effect is possibly mediated by a methyl cytosine-binding protein complex 1-like complex. Furthermore, these data also support the notion of the dominance of methylation over TSA-sensitive histone deacetylation in silencing genes with a high CpG density in the promoter region.

UR - http://www.scopus.com/inward/record.url?scp=0035874991&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0035874991&partnerID=8YFLogxK

M3 - Article

C2 - 11406558

AN - SCOPUS:0035874991

VL - 61

SP - 4820

EP - 4826

JO - Journal of Cancer Research

JF - Journal of Cancer Research

SN - 0099-7013

IS - 12

ER -