Coumarin tags for analysis of peptides by MALDI-TOF MS and MS/MS. 2. Alexa fluor 350 tag for increased peptide and protein identification by LC-MALDI-TOF/TOF MS

Anna Pashkova, Hsuan Shen Chen, Tomas Rejtar, Xin Zang, Roger Giese, Victor Andreev, Eugene Moskovets, Barry L. Karger

Research output: Contribution to journalArticle

34 Scopus citations


The goal of this study was the development of N-terminal tags to improve peptide identification using high-throughput MALDI-TOF/TOF MS. Part 1 of the study was focused on the influence of derivatization on the intensities of MALDI-TOF MS signals of peptides. In part 2, various derivatization approaches for the improvement of peptide fragmentation efficiency in MALDI-TOF/TOF MS are explored. We demonstrate that permanent cation tags, while significantly improving signal intensity in the MS mode, lead to severe suppression of MS/MS fragmentation, making these tags unsuitable for high-throughput MALDI-TOF/TOF MS analysis. In the present work, it was found that labeling with Alexa Fluor 350, a coumarin tag containing a sulfo group, along with guanidation of ε-amino groups of Lys, could enhance unimolecular fragmentation of peptides with the formation of a high-intensity y-ion series, while the peptide intensities in the MS mode were not severely affected. LC-MALDI-TOF/TOF MS analysis of tryptic peptides from the SCX fractions of an E. coli lysate revealed improved peptide scores, a doubling of the total number of peptides, and a 30% increase in the number of proteins identified, as a result of labeling. Furthermore, by combining the data from native and labeled samples, confidence in correct identification was increased, as many proteins were identified by different peptides in the native and labeled data sets. Additionally, derivatization was found not to impair chromatographic behavior of peptides. All these factors suggest that labeling with Alexa Fluor 350 is a promising approach to the high-throughput LC-MALDI-TOF/TOF MS analysis of proteomic samples.

Original languageEnglish (US)
Pages (from-to)2085-2096
Number of pages12
JournalAnalytical Chemistry
Issue number7
StatePublished - Apr 1 2005


ASJC Scopus subject areas

  • Analytical Chemistry

Cite this