Convergence of marine megafauna movement patterns in coastal and open oceans

A. M.M. Sequeira, J. P. Rodríguez, V. M. Eguíluz, R. Harcourt, M. Hindell, D. W. Sims, C. M. Duarte, D. P. Costa, J. Fernández-Gracia, L. C. Ferreira, G. C. Hays, M. R. Heupel, M. G. Meekan, A. Aven, F. Bailleul, A. M.M. Baylis, M. L. Berumen, C. D. Braun, J. Burns, M. J. Caley & 38 others R. Campbell, R. H. Carmichael, E. Clua, L. D. Einoder, Ari Friedlaender, M. E. Goebel, S. D. Goldsworthy, C. Guinet, J. Gunn, D. Hamer, Neil Hammerschlag, M. Hammill, L. A. Hückstädt, N. E. Humphries, M. A. Lea, A. Lowther, A. Mackay, E. McHuron, J. McKenzie, L. McLeay, C. R. McMahon, K. Mengersen, M. M.C. Muelbert, A. M. Pagano, B. Page, N. Queiroz, P. W. Robinson, S. A. Shaffer, M. Shivji, G. B. Skomal, S. R. Thorrold, S. Villegas-Amtmann, M. Weise, R. Wells, B. Wetherbee, A. Wiebkin, B. Wienecke, M. Thums

Research output: Contribution to journalArticle

16 Citations (Scopus)

Abstract

The extent of increasing anthropogenic impacts on large marine vertebrates partly depends on the animals' movement patterns. Effective conservation requires identification of the key drivers of movement including intrinsic properties and extrinsic constraints associated with the dynamic nature of the environments the animals inhabit. However, the relative importance of intrinsic versus extrinsic factors remains elusive. We analyze a global dataset of ∼2.8 million locations from <2, 600 tracked individuals across 50 marine vertebrates evolutionarily separated by millions of years and using different locomotion modes (fly, swim, walk/paddle). Strikingly, movement patterns show a remarkable convergence, being strongly conserved across species and independent of body length and mass, despite these traits ranging over 10 orders of magnitude among the species studied. This represents a fundamental difference between marine and terrestrial vertebrates not previously identified, likely linked to the reduced costs of locomotion in water. Movement patterns were primarily explained by the interaction between species-specific traits and the habitat(s) they move through, resulting in complex movement patternswhenmoving close to coasts compared with more predictable patterns when moving in open oceans. This distinct difference may be associated with greater complexity within coastal microhabitats, highlighting a critical role of preferred habitat in shaping marine vertebrate global movements. Efforts to develop understanding of the characteristics of vertebrate movement should consider the habitat(s) through which they move to identify how movement patterns will alter with forecasted severe ocean changes, such as reduced Arctic sea ice cover, sea level rise, and declining oxygen content.

Original languageEnglish (US)
Pages (from-to)3072-3077
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume115
Issue number12
DOIs
StatePublished - Mar 20 2018
Externally publishedYes

Fingerprint

Oceans and Seas
Vertebrates
Ecosystem
Locomotion
Ice Cover
Diptera
Oxygen
Costs and Cost Analysis
Water

Keywords

  • Displacements
  • Global satellite tracking
  • Probability density function
  • Root-mean-square
  • Turning angles

ASJC Scopus subject areas

  • General

Cite this

Sequeira, A. M. M., Rodríguez, J. P., Eguíluz, V. M., Harcourt, R., Hindell, M., Sims, D. W., ... Thums, M. (2018). Convergence of marine megafauna movement patterns in coastal and open oceans. Proceedings of the National Academy of Sciences of the United States of America, 115(12), 3072-3077. https://doi.org/10.1073/pnas.1716137115

Convergence of marine megafauna movement patterns in coastal and open oceans. / Sequeira, A. M.M.; Rodríguez, J. P.; Eguíluz, V. M.; Harcourt, R.; Hindell, M.; Sims, D. W.; Duarte, C. M.; Costa, D. P.; Fernández-Gracia, J.; Ferreira, L. C.; Hays, G. C.; Heupel, M. R.; Meekan, M. G.; Aven, A.; Bailleul, F.; Baylis, A. M.M.; Berumen, M. L.; Braun, C. D.; Burns, J.; Caley, M. J.; Campbell, R.; Carmichael, R. H.; Clua, E.; Einoder, L. D.; Friedlaender, Ari; Goebel, M. E.; Goldsworthy, S. D.; Guinet, C.; Gunn, J.; Hamer, D.; Hammerschlag, Neil; Hammill, M.; Hückstädt, L. A.; Humphries, N. E.; Lea, M. A.; Lowther, A.; Mackay, A.; McHuron, E.; McKenzie, J.; McLeay, L.; McMahon, C. R.; Mengersen, K.; Muelbert, M. M.C.; Pagano, A. M.; Page, B.; Queiroz, N.; Robinson, P. W.; Shaffer, S. A.; Shivji, M.; Skomal, G. B.; Thorrold, S. R.; Villegas-Amtmann, S.; Weise, M.; Wells, R.; Wetherbee, B.; Wiebkin, A.; Wienecke, B.; Thums, M.

In: Proceedings of the National Academy of Sciences of the United States of America, Vol. 115, No. 12, 20.03.2018, p. 3072-3077.

Research output: Contribution to journalArticle

Sequeira, AMM, Rodríguez, JP, Eguíluz, VM, Harcourt, R, Hindell, M, Sims, DW, Duarte, CM, Costa, DP, Fernández-Gracia, J, Ferreira, LC, Hays, GC, Heupel, MR, Meekan, MG, Aven, A, Bailleul, F, Baylis, AMM, Berumen, ML, Braun, CD, Burns, J, Caley, MJ, Campbell, R, Carmichael, RH, Clua, E, Einoder, LD, Friedlaender, A, Goebel, ME, Goldsworthy, SD, Guinet, C, Gunn, J, Hamer, D, Hammerschlag, N, Hammill, M, Hückstädt, LA, Humphries, NE, Lea, MA, Lowther, A, Mackay, A, McHuron, E, McKenzie, J, McLeay, L, McMahon, CR, Mengersen, K, Muelbert, MMC, Pagano, AM, Page, B, Queiroz, N, Robinson, PW, Shaffer, SA, Shivji, M, Skomal, GB, Thorrold, SR, Villegas-Amtmann, S, Weise, M, Wells, R, Wetherbee, B, Wiebkin, A, Wienecke, B & Thums, M 2018, 'Convergence of marine megafauna movement patterns in coastal and open oceans', Proceedings of the National Academy of Sciences of the United States of America, vol. 115, no. 12, pp. 3072-3077. https://doi.org/10.1073/pnas.1716137115
Sequeira, A. M.M. ; Rodríguez, J. P. ; Eguíluz, V. M. ; Harcourt, R. ; Hindell, M. ; Sims, D. W. ; Duarte, C. M. ; Costa, D. P. ; Fernández-Gracia, J. ; Ferreira, L. C. ; Hays, G. C. ; Heupel, M. R. ; Meekan, M. G. ; Aven, A. ; Bailleul, F. ; Baylis, A. M.M. ; Berumen, M. L. ; Braun, C. D. ; Burns, J. ; Caley, M. J. ; Campbell, R. ; Carmichael, R. H. ; Clua, E. ; Einoder, L. D. ; Friedlaender, Ari ; Goebel, M. E. ; Goldsworthy, S. D. ; Guinet, C. ; Gunn, J. ; Hamer, D. ; Hammerschlag, Neil ; Hammill, M. ; Hückstädt, L. A. ; Humphries, N. E. ; Lea, M. A. ; Lowther, A. ; Mackay, A. ; McHuron, E. ; McKenzie, J. ; McLeay, L. ; McMahon, C. R. ; Mengersen, K. ; Muelbert, M. M.C. ; Pagano, A. M. ; Page, B. ; Queiroz, N. ; Robinson, P. W. ; Shaffer, S. A. ; Shivji, M. ; Skomal, G. B. ; Thorrold, S. R. ; Villegas-Amtmann, S. ; Weise, M. ; Wells, R. ; Wetherbee, B. ; Wiebkin, A. ; Wienecke, B. ; Thums, M. / Convergence of marine megafauna movement patterns in coastal and open oceans. In: Proceedings of the National Academy of Sciences of the United States of America. 2018 ; Vol. 115, No. 12. pp. 3072-3077.
@article{8690aaaa8c2c433c8f8c19b808270ef7,
title = "Convergence of marine megafauna movement patterns in coastal and open oceans",
abstract = "The extent of increasing anthropogenic impacts on large marine vertebrates partly depends on the animals' movement patterns. Effective conservation requires identification of the key drivers of movement including intrinsic properties and extrinsic constraints associated with the dynamic nature of the environments the animals inhabit. However, the relative importance of intrinsic versus extrinsic factors remains elusive. We analyze a global dataset of ∼2.8 million locations from <2, 600 tracked individuals across 50 marine vertebrates evolutionarily separated by millions of years and using different locomotion modes (fly, swim, walk/paddle). Strikingly, movement patterns show a remarkable convergence, being strongly conserved across species and independent of body length and mass, despite these traits ranging over 10 orders of magnitude among the species studied. This represents a fundamental difference between marine and terrestrial vertebrates not previously identified, likely linked to the reduced costs of locomotion in water. Movement patterns were primarily explained by the interaction between species-specific traits and the habitat(s) they move through, resulting in complex movement patternswhenmoving close to coasts compared with more predictable patterns when moving in open oceans. This distinct difference may be associated with greater complexity within coastal microhabitats, highlighting a critical role of preferred habitat in shaping marine vertebrate global movements. Efforts to develop understanding of the characteristics of vertebrate movement should consider the habitat(s) through which they move to identify how movement patterns will alter with forecasted severe ocean changes, such as reduced Arctic sea ice cover, sea level rise, and declining oxygen content.",
keywords = "Displacements, Global satellite tracking, Probability density function, Root-mean-square, Turning angles",
author = "Sequeira, {A. M.M.} and Rodr{\'i}guez, {J. P.} and Egu{\'i}luz, {V. M.} and R. Harcourt and M. Hindell and Sims, {D. W.} and Duarte, {C. M.} and Costa, {D. P.} and J. Fern{\'a}ndez-Gracia and Ferreira, {L. C.} and Hays, {G. C.} and Heupel, {M. R.} and Meekan, {M. G.} and A. Aven and F. Bailleul and Baylis, {A. M.M.} and Berumen, {M. L.} and Braun, {C. D.} and J. Burns and Caley, {M. J.} and R. Campbell and Carmichael, {R. H.} and E. Clua and Einoder, {L. D.} and Ari Friedlaender and Goebel, {M. E.} and Goldsworthy, {S. D.} and C. Guinet and J. Gunn and D. Hamer and Neil Hammerschlag and M. Hammill and H{\"u}ckst{\"a}dt, {L. A.} and Humphries, {N. E.} and Lea, {M. A.} and A. Lowther and A. Mackay and E. McHuron and J. McKenzie and L. McLeay and McMahon, {C. R.} and K. Mengersen and Muelbert, {M. M.C.} and Pagano, {A. M.} and B. Page and N. Queiroz and Robinson, {P. W.} and Shaffer, {S. A.} and M. Shivji and Skomal, {G. B.} and Thorrold, {S. R.} and S. Villegas-Amtmann and M. Weise and R. Wells and B. Wetherbee and A. Wiebkin and B. Wienecke and M. Thums",
year = "2018",
month = "3",
day = "20",
doi = "10.1073/pnas.1716137115",
language = "English (US)",
volume = "115",
pages = "3072--3077",
journal = "Proceedings of the National Academy of Sciences of the United States of America",
issn = "0027-8424",
number = "12",

}

TY - JOUR

T1 - Convergence of marine megafauna movement patterns in coastal and open oceans

AU - Sequeira, A. M.M.

AU - Rodríguez, J. P.

AU - Eguíluz, V. M.

AU - Harcourt, R.

AU - Hindell, M.

AU - Sims, D. W.

AU - Duarte, C. M.

AU - Costa, D. P.

AU - Fernández-Gracia, J.

AU - Ferreira, L. C.

AU - Hays, G. C.

AU - Heupel, M. R.

AU - Meekan, M. G.

AU - Aven, A.

AU - Bailleul, F.

AU - Baylis, A. M.M.

AU - Berumen, M. L.

AU - Braun, C. D.

AU - Burns, J.

AU - Caley, M. J.

AU - Campbell, R.

AU - Carmichael, R. H.

AU - Clua, E.

AU - Einoder, L. D.

AU - Friedlaender, Ari

AU - Goebel, M. E.

AU - Goldsworthy, S. D.

AU - Guinet, C.

AU - Gunn, J.

AU - Hamer, D.

AU - Hammerschlag, Neil

AU - Hammill, M.

AU - Hückstädt, L. A.

AU - Humphries, N. E.

AU - Lea, M. A.

AU - Lowther, A.

AU - Mackay, A.

AU - McHuron, E.

AU - McKenzie, J.

AU - McLeay, L.

AU - McMahon, C. R.

AU - Mengersen, K.

AU - Muelbert, M. M.C.

AU - Pagano, A. M.

AU - Page, B.

AU - Queiroz, N.

AU - Robinson, P. W.

AU - Shaffer, S. A.

AU - Shivji, M.

AU - Skomal, G. B.

AU - Thorrold, S. R.

AU - Villegas-Amtmann, S.

AU - Weise, M.

AU - Wells, R.

AU - Wetherbee, B.

AU - Wiebkin, A.

AU - Wienecke, B.

AU - Thums, M.

PY - 2018/3/20

Y1 - 2018/3/20

N2 - The extent of increasing anthropogenic impacts on large marine vertebrates partly depends on the animals' movement patterns. Effective conservation requires identification of the key drivers of movement including intrinsic properties and extrinsic constraints associated with the dynamic nature of the environments the animals inhabit. However, the relative importance of intrinsic versus extrinsic factors remains elusive. We analyze a global dataset of ∼2.8 million locations from <2, 600 tracked individuals across 50 marine vertebrates evolutionarily separated by millions of years and using different locomotion modes (fly, swim, walk/paddle). Strikingly, movement patterns show a remarkable convergence, being strongly conserved across species and independent of body length and mass, despite these traits ranging over 10 orders of magnitude among the species studied. This represents a fundamental difference between marine and terrestrial vertebrates not previously identified, likely linked to the reduced costs of locomotion in water. Movement patterns were primarily explained by the interaction between species-specific traits and the habitat(s) they move through, resulting in complex movement patternswhenmoving close to coasts compared with more predictable patterns when moving in open oceans. This distinct difference may be associated with greater complexity within coastal microhabitats, highlighting a critical role of preferred habitat in shaping marine vertebrate global movements. Efforts to develop understanding of the characteristics of vertebrate movement should consider the habitat(s) through which they move to identify how movement patterns will alter with forecasted severe ocean changes, such as reduced Arctic sea ice cover, sea level rise, and declining oxygen content.

AB - The extent of increasing anthropogenic impacts on large marine vertebrates partly depends on the animals' movement patterns. Effective conservation requires identification of the key drivers of movement including intrinsic properties and extrinsic constraints associated with the dynamic nature of the environments the animals inhabit. However, the relative importance of intrinsic versus extrinsic factors remains elusive. We analyze a global dataset of ∼2.8 million locations from <2, 600 tracked individuals across 50 marine vertebrates evolutionarily separated by millions of years and using different locomotion modes (fly, swim, walk/paddle). Strikingly, movement patterns show a remarkable convergence, being strongly conserved across species and independent of body length and mass, despite these traits ranging over 10 orders of magnitude among the species studied. This represents a fundamental difference between marine and terrestrial vertebrates not previously identified, likely linked to the reduced costs of locomotion in water. Movement patterns were primarily explained by the interaction between species-specific traits and the habitat(s) they move through, resulting in complex movement patternswhenmoving close to coasts compared with more predictable patterns when moving in open oceans. This distinct difference may be associated with greater complexity within coastal microhabitats, highlighting a critical role of preferred habitat in shaping marine vertebrate global movements. Efforts to develop understanding of the characteristics of vertebrate movement should consider the habitat(s) through which they move to identify how movement patterns will alter with forecasted severe ocean changes, such as reduced Arctic sea ice cover, sea level rise, and declining oxygen content.

KW - Displacements

KW - Global satellite tracking

KW - Probability density function

KW - Root-mean-square

KW - Turning angles

UR - http://www.scopus.com/inward/record.url?scp=85044256723&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85044256723&partnerID=8YFLogxK

U2 - 10.1073/pnas.1716137115

DO - 10.1073/pnas.1716137115

M3 - Article

VL - 115

SP - 3072

EP - 3077

JO - Proceedings of the National Academy of Sciences of the United States of America

JF - Proceedings of the National Academy of Sciences of the United States of America

SN - 0027-8424

IS - 12

ER -