### Abstract

One useful generalization of the convex hull of a set S of points is the ε-strongly convex δ-hull. It is defined to be a convex polygon P with vertices taken from S such that no point in S lies farther than δ outside P and such that even if the vertices of P are perturbed by as much as ε, P remains convex. It was an open question as to whether an ε-strongly convex O(ε)-hull existed for all positive ε. We give here an O(n log n) algorithm for constructing it (which thus proves its existence). This algorithm uses exact rational arithmetic. We also show how to construct an ε-strongly convex O(ε + μ)-hull in O(n log n) time using rounded arithmetic with rounding unit μ. This is the first rounded arithmetic convex hull algorithm which guarantees a convex output and which has error independent of n.

Original language | English (US) |
---|---|

Title of host publication | Proc Sixth Annu Symp Comput Geom |

Publisher | Publ by ACM |

Pages | 235-243 |

Number of pages | 9 |

ISBN (Print) | 0897913620, 9780897913621 |

DOIs | |

State | Published - Jan 1 1990 |

Externally published | Yes |

Event | Proceedings of the Sixth Annual Symposium on Computational Geometry - Berkeley, CA, USA Duration: Jun 6 1990 → Jun 8 1990 |

### Publication series

Name | Proc Sixth Annu Symp Comput Geom |
---|

### Conference

Conference | Proceedings of the Sixth Annual Symposium on Computational Geometry |
---|---|

City | Berkeley, CA, USA |

Period | 6/6/90 → 6/8/90 |

### ASJC Scopus subject areas

- Engineering(all)

## Cite this

*Proc Sixth Annu Symp Comput Geom*(pp. 235-243). (Proc Sixth Annu Symp Comput Geom). Publ by ACM. https://doi.org/10.1145/98524.98577