TY - JOUR
T1 - Compressive Properties and Hydraulic Permeability of Human Meniscus
T2 - Relationships With Tissue Structure and Composition
AU - Morejon, Andy
AU - Norberg, Christopher D.
AU - De Rosa, Massimiliano
AU - Best, Thomas M.
AU - Jackson, Alicia R.
AU - Travascio, Francesco
N1 - Funding Information:
The project described was supported by Grant Number 1R01AR073222 from the NIH (NIAMS).
Publisher Copyright:
© Copyright © 2021 Morejon, Norberg, De Rosa, Best, Jackson and Travascio.
PY - 2021/2/10
Y1 - 2021/2/10
N2 - The meniscus is crucial in maintaining knee function and protecting the joint from secondary pathologies, including osteoarthritis. The meniscus has been shown to absorb up to 75% of the total load on the knee joint. Mechanical behavior of meniscal tissue in compression can be predicted by quantifying the mechanical parameters including; aggregate modulus (H) and Poisson modulus (ν), and the fluid transport parameter: hydraulic permeability (K). These parameters are crucial to develop a computational model of the tissue and for the design and development of tissue engineered scaffolds mimicking the native tissue. Hence, the objective of this study was to characterize the mechanical and fluid transport properties of human meniscus and relate them to the tissue composition. Specimens were prepared from the axial and the circumferential anatomical planes of the tissue. Stress relaxation tests yielded the H, while finite element modeling was used to curve fit for ν and K. Correlations of moduli with water and glycosaminoglycans (GAGs) content were investigated. On average H was found to be 0.11 ± 0.078 MPa, ν was 0.32 ± 0.057, and K was 2.9 ± 2.27 × 10−15 m4N−1s−1. The parameters H, ν, and K were not found to be statistically different across compression orientation or compression level. Water content of the tissue was 77 ± 3.3% while GAG content was 8.79 ± 1.1%. Interestingly, a weak negative correlation was found between H and water content (R2 ~ 34%) and a positive correlation between K and GAG content (R2 ~ 53%). In conclusion, while no significant differences in transport and compressive properties can be found across sample orientation and compression levels, data trends suggest potential relationships between magnitudes of H and K, and GAG content.
AB - The meniscus is crucial in maintaining knee function and protecting the joint from secondary pathologies, including osteoarthritis. The meniscus has been shown to absorb up to 75% of the total load on the knee joint. Mechanical behavior of meniscal tissue in compression can be predicted by quantifying the mechanical parameters including; aggregate modulus (H) and Poisson modulus (ν), and the fluid transport parameter: hydraulic permeability (K). These parameters are crucial to develop a computational model of the tissue and for the design and development of tissue engineered scaffolds mimicking the native tissue. Hence, the objective of this study was to characterize the mechanical and fluid transport properties of human meniscus and relate them to the tissue composition. Specimens were prepared from the axial and the circumferential anatomical planes of the tissue. Stress relaxation tests yielded the H, while finite element modeling was used to curve fit for ν and K. Correlations of moduli with water and glycosaminoglycans (GAGs) content were investigated. On average H was found to be 0.11 ± 0.078 MPa, ν was 0.32 ± 0.057, and K was 2.9 ± 2.27 × 10−15 m4N−1s−1. The parameters H, ν, and K were not found to be statistically different across compression orientation or compression level. Water content of the tissue was 77 ± 3.3% while GAG content was 8.79 ± 1.1%. Interestingly, a weak negative correlation was found between H and water content (R2 ~ 34%) and a positive correlation between K and GAG content (R2 ~ 53%). In conclusion, while no significant differences in transport and compressive properties can be found across sample orientation and compression levels, data trends suggest potential relationships between magnitudes of H and K, and GAG content.
KW - aggregate modulus
KW - confined compression
KW - fibrocartilage
KW - finite element modeling
KW - glycosaminoglycans
KW - poisson modulus
KW - stress- relaxation
UR - http://www.scopus.com/inward/record.url?scp=85101652466&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85101652466&partnerID=8YFLogxK
U2 - 10.3389/fbioe.2020.622552
DO - 10.3389/fbioe.2020.622552
M3 - Article
AN - SCOPUS:85101652466
VL - 8
JO - Frontiers in Bioengineering and Biotechnology
JF - Frontiers in Bioengineering and Biotechnology
SN - 2296-4185
M1 - 622552
ER -