Compressibility of water as a function of temperature and pressure

Rana A. Fine, Frank J. Millero

Research output: Contribution to journalArticlepeer-review

282 Scopus citations


The isothermal compressibility of water from 0 to 100 °C and 0 to 1000 bar has been determined from Wilson's sound velocity measurements which have been normalized to Kell's 1 atm values. The isothermal compressibilities determined from the sound velocities have been fit, with a maximum deviation in compressibility of ±0.016 × 10-6 bar-1, to an extended bulk modulus equation V 0P/ (V0 - Vp) = B + A1P + A2P 2, where V0 and Vp are the specific volume at an applied pressure of zero and P; and B, A1 and A2 are temperature dependent constants. Our specific volume results are in reasonable agreement with the work of Kell and Whalley at low pressures; however, our results at high pressures (1000 bar) disagree by as much as 169 ppm (the average deviation is approximately 115 ppm). A comparison of the compressibilities indicates a parabolic shift in Kell and Whalley's work with a maximum of approximately 0.205 × 10-6 bar-1 at 400 bar and 5 °C. Since the velocity of sound data is extremely reliable ( ±- 0.2 m/sec) and the maximum error in the compressibilities derived from the sound data is within ± 0.016 × 10-6 bar-1, our PVT results based upon the sound data are more accurate than any direct measurements made to date.

Original languageEnglish (US)
Pages (from-to)5529-5536
Number of pages8
JournalThe Journal of Chemical Physics
Issue number10
StatePublished - Jan 1 1973

ASJC Scopus subject areas

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry


Dive into the research topics of 'Compressibility of water as a function of temperature and pressure'. Together they form a unique fingerprint.

Cite this