Comparison of the Schwann cell surface and Schwann cell extracellular matrix as promoters of neurite growth

March D. Ard, Richard P. Bunge, Mary B Bunge

Research output: Contribution to journalArticle

99 Citations (Scopus)

Abstract

The ability of Schwann cells to influence the direction and rate of neurite growth was investigated in a tissue culture model of the bands of Büngner of injured peripheral nerve. The arrangement of this culture system allowed testing of the growth-promoting properties of the Schwann cell surface and extracellular matrix (ECM) assembled by Schwann cells rather than soluble substances secreted into conditioned medium. Various components of peripheral nerve were examined separately as substrata for regenerating neuntes: (i) Schwann cells and their ECM; (ii) Schwann cells alone; (iii) Schwann cell ECM alone; (iv) Schwann cells, fibroblasts, and their assembled ECM; (v) Schwann cells, their ECM and neurites; and (vi) purified laminin. Regenerating peripheral neurites were from expiants of foetal rat dorsal root ganglia, which had been cultured for several weeks to rid them of accompanying non-neuronal cells, or from expiants of foetal rat superior cervical ganglia, which contained non-neuronal cells. CNS neurites from the somatosensory cortex of embryonic rats were also studied; these neurites may be either first growing or regenerating. Neurites from all types of expiants studied grew longer and were guided on a substratum of Schwann cells or Schwann cell ECM compared with a collagen substratum. The presence of fibroblasts during ECM assembly did not enhance the neurite growth-promoting activity. The design of the experiments suggested that the factors by which the Schwann cells or their ECM promoted and guided neurite outgrowth were surface-bound rather than medium-borne. Electron microscopic examination showed that neurites grew on either Schwann cell surfaces or basal lamina material. Attempts to define the chemical nature of the neurite growth-promoting effect of ECM by partial enzymatic digestion did not identify any single component as essential. Purified laminin was a more effective promoter of outgrowth of peripheral neurites than were Schwann cells or Schwann cell ECM. Cortical expiants also grew on laminin, but neurites were accompanied on this substratum by a massive migration of non-neuronal cells; the neurites appeared to extend primarily on the non-neuronal cells rather than by direct attachment to the laminin substratum. This characteristic outgrowth of cortical non-neuronal cells on laminin was not consistently seen on Schwann cell ECM. In conclusion, either the Schwann cell surface or the ECM produced and assembled by Schwann cells promotes neurite outgrowth and guides that outgrowth from the several types of peripheral and CNS neurons studied in this report.

Original languageEnglish
Pages (from-to)539-555
Number of pages17
JournalJournal of Neurocytology
Volume16
Issue number4
DOIs
StatePublished - Aug 1 1987
Externally publishedYes

Fingerprint

Schwann Cells
Neurites
Extracellular Matrix
Growth
Laminin
Peripheral Nerves
Fibroblasts
Superior Cervical Ganglion
Somatosensory Cortex
Spinal Ganglia
Conditioned Culture Medium
Basement Membrane

ASJC Scopus subject areas

  • Neuroscience(all)
  • Histology
  • Anatomy
  • Cell Biology

Cite this

Comparison of the Schwann cell surface and Schwann cell extracellular matrix as promoters of neurite growth. / Ard, March D.; Bunge, Richard P.; Bunge, Mary B.

In: Journal of Neurocytology, Vol. 16, No. 4, 01.08.1987, p. 539-555.

Research output: Contribution to journalArticle

Ard, March D. ; Bunge, Richard P. ; Bunge, Mary B. / Comparison of the Schwann cell surface and Schwann cell extracellular matrix as promoters of neurite growth. In: Journal of Neurocytology. 1987 ; Vol. 16, No. 4. pp. 539-555.
@article{e90d460b53624aa9b631dbb97c69ca42,
title = "Comparison of the Schwann cell surface and Schwann cell extracellular matrix as promoters of neurite growth",
abstract = "The ability of Schwann cells to influence the direction and rate of neurite growth was investigated in a tissue culture model of the bands of B{\"u}ngner of injured peripheral nerve. The arrangement of this culture system allowed testing of the growth-promoting properties of the Schwann cell surface and extracellular matrix (ECM) assembled by Schwann cells rather than soluble substances secreted into conditioned medium. Various components of peripheral nerve were examined separately as substrata for regenerating neuntes: (i) Schwann cells and their ECM; (ii) Schwann cells alone; (iii) Schwann cell ECM alone; (iv) Schwann cells, fibroblasts, and their assembled ECM; (v) Schwann cells, their ECM and neurites; and (vi) purified laminin. Regenerating peripheral neurites were from expiants of foetal rat dorsal root ganglia, which had been cultured for several weeks to rid them of accompanying non-neuronal cells, or from expiants of foetal rat superior cervical ganglia, which contained non-neuronal cells. CNS neurites from the somatosensory cortex of embryonic rats were also studied; these neurites may be either first growing or regenerating. Neurites from all types of expiants studied grew longer and were guided on a substratum of Schwann cells or Schwann cell ECM compared with a collagen substratum. The presence of fibroblasts during ECM assembly did not enhance the neurite growth-promoting activity. The design of the experiments suggested that the factors by which the Schwann cells or their ECM promoted and guided neurite outgrowth were surface-bound rather than medium-borne. Electron microscopic examination showed that neurites grew on either Schwann cell surfaces or basal lamina material. Attempts to define the chemical nature of the neurite growth-promoting effect of ECM by partial enzymatic digestion did not identify any single component as essential. Purified laminin was a more effective promoter of outgrowth of peripheral neurites than were Schwann cells or Schwann cell ECM. Cortical expiants also grew on laminin, but neurites were accompanied on this substratum by a massive migration of non-neuronal cells; the neurites appeared to extend primarily on the non-neuronal cells rather than by direct attachment to the laminin substratum. This characteristic outgrowth of cortical non-neuronal cells on laminin was not consistently seen on Schwann cell ECM. In conclusion, either the Schwann cell surface or the ECM produced and assembled by Schwann cells promotes neurite outgrowth and guides that outgrowth from the several types of peripheral and CNS neurons studied in this report.",
author = "Ard, {March D.} and Bunge, {Richard P.} and Bunge, {Mary B}",
year = "1987",
month = "8",
day = "1",
doi = "10.1007/BF01668507",
language = "English",
volume = "16",
pages = "539--555",
journal = "Journal of Neurocytology",
issn = "0300-4864",
publisher = "Kluwer Academic Publishers",
number = "4",

}

TY - JOUR

T1 - Comparison of the Schwann cell surface and Schwann cell extracellular matrix as promoters of neurite growth

AU - Ard, March D.

AU - Bunge, Richard P.

AU - Bunge, Mary B

PY - 1987/8/1

Y1 - 1987/8/1

N2 - The ability of Schwann cells to influence the direction and rate of neurite growth was investigated in a tissue culture model of the bands of Büngner of injured peripheral nerve. The arrangement of this culture system allowed testing of the growth-promoting properties of the Schwann cell surface and extracellular matrix (ECM) assembled by Schwann cells rather than soluble substances secreted into conditioned medium. Various components of peripheral nerve were examined separately as substrata for regenerating neuntes: (i) Schwann cells and their ECM; (ii) Schwann cells alone; (iii) Schwann cell ECM alone; (iv) Schwann cells, fibroblasts, and their assembled ECM; (v) Schwann cells, their ECM and neurites; and (vi) purified laminin. Regenerating peripheral neurites were from expiants of foetal rat dorsal root ganglia, which had been cultured for several weeks to rid them of accompanying non-neuronal cells, or from expiants of foetal rat superior cervical ganglia, which contained non-neuronal cells. CNS neurites from the somatosensory cortex of embryonic rats were also studied; these neurites may be either first growing or regenerating. Neurites from all types of expiants studied grew longer and were guided on a substratum of Schwann cells or Schwann cell ECM compared with a collagen substratum. The presence of fibroblasts during ECM assembly did not enhance the neurite growth-promoting activity. The design of the experiments suggested that the factors by which the Schwann cells or their ECM promoted and guided neurite outgrowth were surface-bound rather than medium-borne. Electron microscopic examination showed that neurites grew on either Schwann cell surfaces or basal lamina material. Attempts to define the chemical nature of the neurite growth-promoting effect of ECM by partial enzymatic digestion did not identify any single component as essential. Purified laminin was a more effective promoter of outgrowth of peripheral neurites than were Schwann cells or Schwann cell ECM. Cortical expiants also grew on laminin, but neurites were accompanied on this substratum by a massive migration of non-neuronal cells; the neurites appeared to extend primarily on the non-neuronal cells rather than by direct attachment to the laminin substratum. This characteristic outgrowth of cortical non-neuronal cells on laminin was not consistently seen on Schwann cell ECM. In conclusion, either the Schwann cell surface or the ECM produced and assembled by Schwann cells promotes neurite outgrowth and guides that outgrowth from the several types of peripheral and CNS neurons studied in this report.

AB - The ability of Schwann cells to influence the direction and rate of neurite growth was investigated in a tissue culture model of the bands of Büngner of injured peripheral nerve. The arrangement of this culture system allowed testing of the growth-promoting properties of the Schwann cell surface and extracellular matrix (ECM) assembled by Schwann cells rather than soluble substances secreted into conditioned medium. Various components of peripheral nerve were examined separately as substrata for regenerating neuntes: (i) Schwann cells and their ECM; (ii) Schwann cells alone; (iii) Schwann cell ECM alone; (iv) Schwann cells, fibroblasts, and their assembled ECM; (v) Schwann cells, their ECM and neurites; and (vi) purified laminin. Regenerating peripheral neurites were from expiants of foetal rat dorsal root ganglia, which had been cultured for several weeks to rid them of accompanying non-neuronal cells, or from expiants of foetal rat superior cervical ganglia, which contained non-neuronal cells. CNS neurites from the somatosensory cortex of embryonic rats were also studied; these neurites may be either first growing or regenerating. Neurites from all types of expiants studied grew longer and were guided on a substratum of Schwann cells or Schwann cell ECM compared with a collagen substratum. The presence of fibroblasts during ECM assembly did not enhance the neurite growth-promoting activity. The design of the experiments suggested that the factors by which the Schwann cells or their ECM promoted and guided neurite outgrowth were surface-bound rather than medium-borne. Electron microscopic examination showed that neurites grew on either Schwann cell surfaces or basal lamina material. Attempts to define the chemical nature of the neurite growth-promoting effect of ECM by partial enzymatic digestion did not identify any single component as essential. Purified laminin was a more effective promoter of outgrowth of peripheral neurites than were Schwann cells or Schwann cell ECM. Cortical expiants also grew on laminin, but neurites were accompanied on this substratum by a massive migration of non-neuronal cells; the neurites appeared to extend primarily on the non-neuronal cells rather than by direct attachment to the laminin substratum. This characteristic outgrowth of cortical non-neuronal cells on laminin was not consistently seen on Schwann cell ECM. In conclusion, either the Schwann cell surface or the ECM produced and assembled by Schwann cells promotes neurite outgrowth and guides that outgrowth from the several types of peripheral and CNS neurons studied in this report.

UR - http://www.scopus.com/inward/record.url?scp=0023199485&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0023199485&partnerID=8YFLogxK

U2 - 10.1007/BF01668507

DO - 10.1007/BF01668507

M3 - Article

C2 - 3681353

AN - SCOPUS:0023199485

VL - 16

SP - 539

EP - 555

JO - Journal of Neurocytology

JF - Journal of Neurocytology

SN - 0300-4864

IS - 4

ER -