Comparison between the role of the neuronal and inducible nitric oxide synthase in methamphetamine-induced neurotoxicity and sensitization

Yossef Itzhak, Julio L. Martin, Syed F. Ali

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

The involvement of the neuronal and inducible nitric oxide synthase (nNOS and iNOS, respectively) in methamphetamine (METH)-induced dopaminergic neurotoxicity and behavioral sensitization was investigated. To determine METH-induced neurotoxicity, mice deficient in the nNOS and iNOS genes, nNOS(-/-) and iNOS(-/-) mice, and wild-type controls received either saline or METH (5 mg/kg x 3). After 72 h the level of striatal dopaminergic markers were measured. Administration of METH to nNOS(-/-) mice had no significant effect on the level of striatal dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), or dopamine transporter (DAT) binding sites. However, METH caused 25-40% depletion of dopaminergic markers in iNOS(-/-) mice and 63-69% depletion in the wild-type mice. METH-induced locomotor activity was measured following the administration of a low dose (1 mg/kg) on day 1. Subsequently animals received the high dose of METH (5 mg/kg x 3). On day 4, after a 68-72 h drug free period, animals were challenged with 1 mg/kg METH, and locomotor activity was recorded. The intensity of METH-induced locomotion in nNOS(-/-) mice on day 1 and 4 was similar, suggesting that locomotor sensitization did not develop. However, the intensity of METH-induced locomotion in the iNOS(-/-) and wild-type mice on day 4 was doubled compared to day 1, suggesting the development of sensitization. The present findings indicate that nNOS(-/-) mice are more resistant to METH-induced neurotoxicity and behavioral sensitization than iNOS(-/-) mice. These results suggest a major role for nNOS rather than iNOS in the effects of METH.

Original languageEnglish (US)
Pages (from-to)104-111
Number of pages8
JournalAnnals of the New York Academy of Sciences
Volume914
DOIs
StatePublished - 2000

ASJC Scopus subject areas

  • Neuroscience(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • History and Philosophy of Science

Fingerprint

Dive into the research topics of 'Comparison between the role of the neuronal and inducible nitric oxide synthase in methamphetamine-induced neurotoxicity and sensitization'. Together they form a unique fingerprint.

Cite this