TY - JOUR
T1 - Comparative activity of antimicrobials against Pseudomonas aeruginosa, Achromobacter xylosoxidans and Stenotrophomonas maltophilia keratitis isolates
AU - Spierer, Oriel
AU - Miller, Darlene
AU - O'Brien, Terrence P.
PY - 2018/5/1
Y1 - 2018/5/1
N2 - Background/aims Achromobacter xylosoxidans and Stenotrophomonas maltophilia are emerging corneal pathogens, which are closely related to Pseudomonas aeruginosa, and have intrinsic resistance to many commonly available antimicrobials. The purpose of this study is to compare the in vitro efficacy of 12 antimicrobial agents against A. xylosoxidans, S. maltophilia and P. aeruginosa isolates recovered from clinical cases of keratitis. Methods Recovered corneal isolates (n=58) were identified and extracted from the Microbiology Data Bank of the Bascom Palmer Eye Institute. Comparative in vitro minimum inhibitory concentration (MIC) susceptibility profiles for fluoroquinolones, aminoglycosides, beta-lactams and miscellaneous antibiotics were recorded using the E-test methodology. Pharmacodynamic indices (Cmax/MIC) were calculated. Results A. xylosoxidans and S. maltophilia isolates were resistant to fluoroquinolones, aminoglycosides and ceftazidime (susceptibility rate ranging from 0% to 30%) while P. aeruginosa isolates showed a susceptibility rate of 95%-100% to these antimicrobials (P<0.00001 for the various antimicrobials). Exception was moxifloxacin with 80% of susceptibility rate to S. maltophilia isolates and Cmax/MIC=10.19. Ninety to 100% susceptibility rates were found for minocycline and trimethoprim/sulfamethoxazole for both A. xylosoxidans and S. maltophilia. One hundred per cent of the A. xylosoxidans isolates were susceptible to piperacillin/tazobactam and ticarcillin/clavulanic acid. Conclusions There is a significant difference in susceptibility patterns between A. xylosoxidans, S. maltophilia and P. aeruginosa. Fluoroquinolones and aminoglycosides may not be effective against A. xylosoxidans and S. maltophilia. Antibiotics that are not commercially available as eye drops, such as beta-lactams for A. xylosoxidans, and trimethoprim/sulfamethoxazole and minocycline for both A. xylosoxidans and S. maltophilia should be considered.
AB - Background/aims Achromobacter xylosoxidans and Stenotrophomonas maltophilia are emerging corneal pathogens, which are closely related to Pseudomonas aeruginosa, and have intrinsic resistance to many commonly available antimicrobials. The purpose of this study is to compare the in vitro efficacy of 12 antimicrobial agents against A. xylosoxidans, S. maltophilia and P. aeruginosa isolates recovered from clinical cases of keratitis. Methods Recovered corneal isolates (n=58) were identified and extracted from the Microbiology Data Bank of the Bascom Palmer Eye Institute. Comparative in vitro minimum inhibitory concentration (MIC) susceptibility profiles for fluoroquinolones, aminoglycosides, beta-lactams and miscellaneous antibiotics were recorded using the E-test methodology. Pharmacodynamic indices (Cmax/MIC) were calculated. Results A. xylosoxidans and S. maltophilia isolates were resistant to fluoroquinolones, aminoglycosides and ceftazidime (susceptibility rate ranging from 0% to 30%) while P. aeruginosa isolates showed a susceptibility rate of 95%-100% to these antimicrobials (P<0.00001 for the various antimicrobials). Exception was moxifloxacin with 80% of susceptibility rate to S. maltophilia isolates and Cmax/MIC=10.19. Ninety to 100% susceptibility rates were found for minocycline and trimethoprim/sulfamethoxazole for both A. xylosoxidans and S. maltophilia. One hundred per cent of the A. xylosoxidans isolates were susceptible to piperacillin/tazobactam and ticarcillin/clavulanic acid. Conclusions There is a significant difference in susceptibility patterns between A. xylosoxidans, S. maltophilia and P. aeruginosa. Fluoroquinolones and aminoglycosides may not be effective against A. xylosoxidans and S. maltophilia. Antibiotics that are not commercially available as eye drops, such as beta-lactams for A. xylosoxidans, and trimethoprim/sulfamethoxazole and minocycline for both A. xylosoxidans and S. maltophilia should be considered.
KW - contact lens
KW - cornea
KW - experimental laboratory
KW - infection
KW - microbiology
UR - http://www.scopus.com/inward/record.url?scp=85046380051&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85046380051&partnerID=8YFLogxK
U2 - 10.1136/bjophthalmol-2017-311751
DO - 10.1136/bjophthalmol-2017-311751
M3 - Article
C2 - 29459431
AN - SCOPUS:85046380051
VL - 102
SP - 708
EP - 712
JO - British Journal of Ophthalmology
JF - British Journal of Ophthalmology
SN - 0007-1161
IS - 5
ER -