TY - JOUR
T1 - Combined effect of pH and sodium cyanate on the inhibition of tumor cell proliferation and metabolism by BCNU and hyperthermia
AU - Hu, Jennifer J.
AU - Zirvi, Karimullah A.
AU - Lea, Michael A.
N1 - Copyright:
Copyright 2008 Elsevier B.V., All rights reserved.
PY - 1990/7
Y1 - 1990/7
N2 - In previous studies, we have found that combined treatment with BCNU and sodium cyanate could have a greater effect on the survival of mice bearing B16 melanoma than treatment with either agent alone. With rat hepatoma and human colon cancer cells in culture, we have obtained evidence that the inhibition of cell proliferation by sodium cyanate is greater at pH 6.6 than at pH 7.4. In the present work, the effects of combination treatments on the proliferation of cancer cells were studied with cyanate, pH, BCNU, and hyperthermia. With HT29 human colon cancer cells, the inhibitory effect of BCNU (50-100 μg/ml) was greater when the cells were treated at pH 6.6 than at pH 7.4. The influence of pH appeared to be absent or minimal at lower or higher concentrations of BCNU. We confirmed our previous observation that the inhibition of proliferation of LS174T human colon cancer cells is greater at pH 6.6 than at pH 7.4, and we observed an inhibitory effect of BCNU (50 or 200 μg/ml). However, no more than additive effects were seen with combination treatment. An inhibitory effect of hyperthermia was seen for the incorporation of [3H]-leucine into protein of rat hepatoma cells (HTC) and for that of [3H]-thymidine into DNA of human colon cancer (HT29) cells. In neither case was the effect of hyperthermia significantly enhanced by treatment with sodium cyanate beyond that seen with one of the treatments alone. The data confirmed that the inhibitory effect of sodium cyanate on cell proliferation can be enhanced by a low pH but did not provide evidence for synergistic effects in combination with BCNU or hyperthermia.
AB - In previous studies, we have found that combined treatment with BCNU and sodium cyanate could have a greater effect on the survival of mice bearing B16 melanoma than treatment with either agent alone. With rat hepatoma and human colon cancer cells in culture, we have obtained evidence that the inhibition of cell proliferation by sodium cyanate is greater at pH 6.6 than at pH 7.4. In the present work, the effects of combination treatments on the proliferation of cancer cells were studied with cyanate, pH, BCNU, and hyperthermia. With HT29 human colon cancer cells, the inhibitory effect of BCNU (50-100 μg/ml) was greater when the cells were treated at pH 6.6 than at pH 7.4. The influence of pH appeared to be absent or minimal at lower or higher concentrations of BCNU. We confirmed our previous observation that the inhibition of proliferation of LS174T human colon cancer cells is greater at pH 6.6 than at pH 7.4, and we observed an inhibitory effect of BCNU (50 or 200 μg/ml). However, no more than additive effects were seen with combination treatment. An inhibitory effect of hyperthermia was seen for the incorporation of [3H]-leucine into protein of rat hepatoma cells (HTC) and for that of [3H]-thymidine into DNA of human colon cancer (HT29) cells. In neither case was the effect of hyperthermia significantly enhanced by treatment with sodium cyanate beyond that seen with one of the treatments alone. The data confirmed that the inhibitory effect of sodium cyanate on cell proliferation can be enhanced by a low pH but did not provide evidence for synergistic effects in combination with BCNU or hyperthermia.
UR - http://www.scopus.com/inward/record.url?scp=0025363034&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0025363034&partnerID=8YFLogxK
U2 - 10.1007/BF02897228
DO - 10.1007/BF02897228
M3 - Article
C2 - 2369791
AN - SCOPUS:0025363034
VL - 26
SP - 269
EP - 272
JO - Cancer Chemotherapy and Pharmacology
JF - Cancer Chemotherapy and Pharmacology
SN - 0344-5704
IS - 4
ER -