Cold pre-compression treatment of gas diffusion electrode for pem fuel cells

Shan Jia, Hongtan Liu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In a PEM fuel cell, it has been shown that the compression under the land area is the main reason for the observed higher performance than that under channel areas. If the area under the channel can also benefit from such a compression the overall performance of the cell will increase. Since the areas under the channel are not directly compressed in an assembled fuel cell, it is the objective of this study to determine if a cold pre-compression treatment of the gas diffusion electrode (GDE) may have a significant positive effect on the overall performance of the cell. First, the GDE is cold pre-compressed to a level similar to the compression that would be experienced by the land areas in an assembled fuel cell. Then the pre-compressed GDE is assembled in a regular test fuel cell and the performances under various operating conditions are studied. Finally, the cell performance results are compared with the results obtained from a fuel cell with a regular GDE. The experimental results show that cold pre-compress of the GDE has significantly improved the overall performance of the fuel cell. Further experiments have also been conducted with five different levels of cold pre-compression to determine if there exists an optimal compression and its value if it exists. The experimental results show that the performance of the fuel cell first increases with the level of cold pre-compression, reaching a maximum and then decreases with the level of compression. These results clearly indicate that there indeed exists an optimal level of compression. Further studies using both cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) have further corroborated the cell performance findings as well as the underlying mechanism. The results of EIS indicate that the ohmic resistance is hardly affected by the cold pre-compression, while the charge transfer resistance is significantly affected, especially in high current density region. The CV results show that the electro-chemical area (ECA) is higher with the cold pre-compressed GDE and there is an optimal compression that results in the maximum ECA. Therefore, the experimental results have shown that (a) the cold pre-compression treatment of the GDE is an effective and simple technique to increase PEM fuel cell performances; (b) there exists an optimal compression level at which the cell reaches its maximum performance; and (c) the increased performance is due to the increase of ECA resulting from the cold pre-compression treatment.

Original languageEnglish (US)
Title of host publicationASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011
Pages553-560
Number of pages8
EditionPARTS A AND B
StatePublished - Dec 1 2011
EventASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011 - Denver, CO, United States
Duration: Nov 11 2011Nov 17 2011

Publication series

NameASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011
NumberPARTS A AND B
Volume4

Other

OtherASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011
CountryUnited States
CityDenver, CO
Period11/11/1111/17/11

    Fingerprint

ASJC Scopus subject areas

  • Mechanical Engineering

Cite this

Jia, S., & Liu, H. (2011). Cold pre-compression treatment of gas diffusion electrode for pem fuel cells. In ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011 (PARTS A AND B ed., pp. 553-560). (ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011; Vol. 4, No. PARTS A AND B).