Clinical variables associated with glaucomatous injury in eyes with large optic disc cupping

David Greenfield, Harmohina Bagga

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

BACKGROUND AND OBJECTIVE: To characterize the range of retinal nerve fiber layer (RNFL) and standard automated perimetry damage in eyes with large vertical cup-disc ratio (VCDR). PATIENTS AND METHODS: Complete examination, standard automated perimetry, scanning laser polarimetry with variable corneal compensation, and optical coherence tomography (OCT) of the RNFL and optic nerve head were performed. Large VCDR was defined as ≥ 0.80 using stereoscopic disc examination and OCT optic nerve head analysis. Structural and functional characteristics were assessed separately in eyes with a disc area of less than 2 mm2, 2 to 2.5 mm2 and greater than 2.5 mm2. RESULTS: Fifty-seven eyes of 57 subjects were enrolled. A broad range in mean deviation (2.0 to -32.8 dB) and mean RNFL thickness with OCT (24.3-100.4 μm) and scanning laser polarimetry with variable corneal compensation (24.0-61.7 μm) was identified. Predictors of standard automated perimetry severity using multiple linear regression were mean RNFL thickness using OCT (P = .001) and scanning laser polarimetry (P = .001), OCT-vertical cup diameter (P = .003), temporal, superior, nasal, inferior, temporal standard deviation (P = .03), and OCT-disc area (P = .04). Eyes with an OCT-disc area of less than 2 mm 2 demonstrated significantly greater standard automated perimetry damage, RNFL loss using OCT and scanning laser polarimetry, and OCT-rim area (P = .002, .0007, .03, and < .0001, respectively) compared with eyes with a disc area of greater than 2.5 mm2. CONCLUSIONS: Eyes with large VCDR have a wide range of RNFL atrophy and standard automated perimetry damage. Small optic discs are associated with more advanced glaucomatous injury.

Original languageEnglish
Pages (from-to)401-409
Number of pages9
JournalOphthalmic Surgery Lasers and Imaging
Volume36
Issue number5
StatePublished - Sep 1 2005

Fingerprint

Eye Injuries
Optic Disk
Optical Coherence Tomography
Scanning Laser Polarimetry
Visual Field Tests
Nerve Fibers
Nose
Atrophy
Linear Models

ASJC Scopus subject areas

  • Ophthalmology

Cite this

Clinical variables associated with glaucomatous injury in eyes with large optic disc cupping. / Greenfield, David; Bagga, Harmohina.

In: Ophthalmic Surgery Lasers and Imaging, Vol. 36, No. 5, 01.09.2005, p. 401-409.

Research output: Contribution to journalArticle

@article{5dc861e3e1134b6a987e337480111a18,
title = "Clinical variables associated with glaucomatous injury in eyes with large optic disc cupping",
abstract = "BACKGROUND AND OBJECTIVE: To characterize the range of retinal nerve fiber layer (RNFL) and standard automated perimetry damage in eyes with large vertical cup-disc ratio (VCDR). PATIENTS AND METHODS: Complete examination, standard automated perimetry, scanning laser polarimetry with variable corneal compensation, and optical coherence tomography (OCT) of the RNFL and optic nerve head were performed. Large VCDR was defined as ≥ 0.80 using stereoscopic disc examination and OCT optic nerve head analysis. Structural and functional characteristics were assessed separately in eyes with a disc area of less than 2 mm2, 2 to 2.5 mm2 and greater than 2.5 mm2. RESULTS: Fifty-seven eyes of 57 subjects were enrolled. A broad range in mean deviation (2.0 to -32.8 dB) and mean RNFL thickness with OCT (24.3-100.4 μm) and scanning laser polarimetry with variable corneal compensation (24.0-61.7 μm) was identified. Predictors of standard automated perimetry severity using multiple linear regression were mean RNFL thickness using OCT (P = .001) and scanning laser polarimetry (P = .001), OCT-vertical cup diameter (P = .003), temporal, superior, nasal, inferior, temporal standard deviation (P = .03), and OCT-disc area (P = .04). Eyes with an OCT-disc area of less than 2 mm 2 demonstrated significantly greater standard automated perimetry damage, RNFL loss using OCT and scanning laser polarimetry, and OCT-rim area (P = .002, .0007, .03, and < .0001, respectively) compared with eyes with a disc area of greater than 2.5 mm2. CONCLUSIONS: Eyes with large VCDR have a wide range of RNFL atrophy and standard automated perimetry damage. Small optic discs are associated with more advanced glaucomatous injury.",
author = "David Greenfield and Harmohina Bagga",
year = "2005",
month = "9",
day = "1",
language = "English",
volume = "36",
pages = "401--409",
journal = "Ophthalmic Surgery Lasers and Imaging Retina",
issn = "2325-8160",
publisher = "Slack Incorporated",
number = "5",

}

TY - JOUR

T1 - Clinical variables associated with glaucomatous injury in eyes with large optic disc cupping

AU - Greenfield, David

AU - Bagga, Harmohina

PY - 2005/9/1

Y1 - 2005/9/1

N2 - BACKGROUND AND OBJECTIVE: To characterize the range of retinal nerve fiber layer (RNFL) and standard automated perimetry damage in eyes with large vertical cup-disc ratio (VCDR). PATIENTS AND METHODS: Complete examination, standard automated perimetry, scanning laser polarimetry with variable corneal compensation, and optical coherence tomography (OCT) of the RNFL and optic nerve head were performed. Large VCDR was defined as ≥ 0.80 using stereoscopic disc examination and OCT optic nerve head analysis. Structural and functional characteristics were assessed separately in eyes with a disc area of less than 2 mm2, 2 to 2.5 mm2 and greater than 2.5 mm2. RESULTS: Fifty-seven eyes of 57 subjects were enrolled. A broad range in mean deviation (2.0 to -32.8 dB) and mean RNFL thickness with OCT (24.3-100.4 μm) and scanning laser polarimetry with variable corneal compensation (24.0-61.7 μm) was identified. Predictors of standard automated perimetry severity using multiple linear regression were mean RNFL thickness using OCT (P = .001) and scanning laser polarimetry (P = .001), OCT-vertical cup diameter (P = .003), temporal, superior, nasal, inferior, temporal standard deviation (P = .03), and OCT-disc area (P = .04). Eyes with an OCT-disc area of less than 2 mm 2 demonstrated significantly greater standard automated perimetry damage, RNFL loss using OCT and scanning laser polarimetry, and OCT-rim area (P = .002, .0007, .03, and < .0001, respectively) compared with eyes with a disc area of greater than 2.5 mm2. CONCLUSIONS: Eyes with large VCDR have a wide range of RNFL atrophy and standard automated perimetry damage. Small optic discs are associated with more advanced glaucomatous injury.

AB - BACKGROUND AND OBJECTIVE: To characterize the range of retinal nerve fiber layer (RNFL) and standard automated perimetry damage in eyes with large vertical cup-disc ratio (VCDR). PATIENTS AND METHODS: Complete examination, standard automated perimetry, scanning laser polarimetry with variable corneal compensation, and optical coherence tomography (OCT) of the RNFL and optic nerve head were performed. Large VCDR was defined as ≥ 0.80 using stereoscopic disc examination and OCT optic nerve head analysis. Structural and functional characteristics were assessed separately in eyes with a disc area of less than 2 mm2, 2 to 2.5 mm2 and greater than 2.5 mm2. RESULTS: Fifty-seven eyes of 57 subjects were enrolled. A broad range in mean deviation (2.0 to -32.8 dB) and mean RNFL thickness with OCT (24.3-100.4 μm) and scanning laser polarimetry with variable corneal compensation (24.0-61.7 μm) was identified. Predictors of standard automated perimetry severity using multiple linear regression were mean RNFL thickness using OCT (P = .001) and scanning laser polarimetry (P = .001), OCT-vertical cup diameter (P = .003), temporal, superior, nasal, inferior, temporal standard deviation (P = .03), and OCT-disc area (P = .04). Eyes with an OCT-disc area of less than 2 mm 2 demonstrated significantly greater standard automated perimetry damage, RNFL loss using OCT and scanning laser polarimetry, and OCT-rim area (P = .002, .0007, .03, and < .0001, respectively) compared with eyes with a disc area of greater than 2.5 mm2. CONCLUSIONS: Eyes with large VCDR have a wide range of RNFL atrophy and standard automated perimetry damage. Small optic discs are associated with more advanced glaucomatous injury.

UR - http://www.scopus.com/inward/record.url?scp=26244465477&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=26244465477&partnerID=8YFLogxK

M3 - Article

C2 - 16238039

AN - SCOPUS:26244465477

VL - 36

SP - 401

EP - 409

JO - Ophthalmic Surgery Lasers and Imaging Retina

JF - Ophthalmic Surgery Lasers and Imaging Retina

SN - 2325-8160

IS - 5

ER -