Clinical, functional, and neurophysiologic assessment of dysplastic cortical networks: Implications for cortical functioning and surgical management

Michael Duchowny

Research output: Contribution to journalReview articlepeer-review

46 Scopus citations

Abstract

Summary Cortical malformations are highly epileptogenic lesions associated with complex, unanticipated, and often aberrant electrophysiologic and functional relationships. These relationships are inextricably linked to widespread cortical networks subserving eloquent functions, particularly language and motor ability. Cytomegalic neurons but not balloon cells in Palmini type 2 dysplastic cortex are intrinsically hyperexcitable and contribute to local epileptogenesis and functional responsiveness. However, there is much evidence that focal cortical dysplasia is rarely a localized or even regional process, and is a functionally, electrophysiologically, and ultimately clinically integrated neural network disorder. Not surprisingly, malformed cortex is implicated in cognitive dysfunction, particularly disturbances of linguistic processing. An understanding of these relationships is critical for successful epilepsy surgery. Gains in surgical prognosis rely on multiple diagnostic modalities to delineate complex anatomic, electrophysiologic, and functional relationships in magnetic resonance imaging (MRI)-negative patients with rates of seizure-freedom roughly comparable to lesional patients

Original languageEnglish (US)
Pages (from-to)19-27
Number of pages9
JournalEpilepsia
Volume50
Issue numberSUPPL. 9
DOIs
StatePublished - Oct 2009

Keywords

  • Cortical dysplasia
  • Intractable epilepsy
  • Neural network

ASJC Scopus subject areas

  • Clinical Neurology
  • Neurology

Fingerprint Dive into the research topics of 'Clinical, functional, and neurophysiologic assessment of dysplastic cortical networks: Implications for cortical functioning and surgical management'. Together they form a unique fingerprint.

Cite this