Characterization of photochemically induced spinal cord injury in the rat by light and electron microscopy

Mary B Bunge, V. R. Holets, M. L. Bates, T. S. Clarke, B. D. Watson

Research output: Contribution to journalArticle

92 Citations (Scopus)

Abstract

This study characterized by light and electron microscopy 49 photochemically induced lesions in adult rat spinal cord at 16 time intervals from 2 days to 17 months after lesioning. Vascular thrombosis, resulting from an intravascular photochemical reaction induced by a rose bengal/laser beam interaction, led within a few days to an extensive area of tissue deterioration. This area, termed the 'lesion cavity' in contrast to the 'secondary cavity' observed later, was at least 6 mm long and, at the epicenter, extended across most of the spinal cord width and from the dorsal surface to a level near the central canal. The area of spared tissue, 43% of the spinal cord cross-section at 2 days, did not change significantly between 2 and 56 days. Large numbers of macrophages populated the degenerating area by 5 days. This necrotic area was surrounded by a thin peripheral rim of largely intact white matter dorsally and laterally except at the epicenter where the white matter degenerated dorsomedially. In these peripheral regions, demyelination and, by 14 days, remyelination by both oligodendrocytes and Schwann cells (SCs) were evident. By 28 days, far more SCs (and meningeal cells) had entered the dorsal spinal cord, typically at the epicenter where meningeal thickening was most striking, and had migrated farther into the lesion cavity. These SCs and the axons they myelinated remained prominent in dorsal regions for many months, particularly at the epicenter; the proportion of SC to oligodendrocyte myelin diminished away from the epicenter. By 8 weeks, the lesion cavity was considerably diminished in size and thereafter it contained scattered macrophages, SC-myelinated axons, and blood vessels, primarily medially owing to flattening into clefts bilaterally. The cavity was partly bordered by astrocytes whose surfaces toward the lesion cavity were highly irregular and coated with basal lamina. Bare axons, consistently seen by electron microscopy at 5 days to 6 months, were typically ensconced among astrocytes starting at 28 days. Also by this time large, smoothly contoured, empty secondary cavities appeared, usually rostral and caudal to the epicenter; they did not increase in size or number with time. From 28 days to 17 months postlesion they occurred in 68% of the lesioned spinal cords. The secondary cavity border was composed of cells thought to be astrocytes but, surprisingly, the luminal surface was smooth and lacked basal lamina, in contrast to the primary lesion cavity border. Thus, two types of cavities formed after photochemical lesioning. This lesioning technique may provide an appropriate milieu to better understand aspects of the vexing problem of post-traumatic syringomyelia in the human.

Original languageEnglish
Pages (from-to)76-93
Number of pages18
JournalExperimental Neurology
Volume127
Issue number1
DOIs
StatePublished - Jan 1 1994

Fingerprint

Schwann Cells
Spinal Cord Injuries
Spinal Cord
Electron Microscopy
Light
Astrocytes
Axons
Oligodendroglia
Basement Membrane
Blood Vessels
Macrophages
Syringomyelia
Rose Bengal
Demyelinating Diseases
Myelin Sheath
Lasers
Thrombosis
White Matter

ASJC Scopus subject areas

  • Neuroscience(all)
  • Neurology

Cite this

Characterization of photochemically induced spinal cord injury in the rat by light and electron microscopy. / Bunge, Mary B; Holets, V. R.; Bates, M. L.; Clarke, T. S.; Watson, B. D.

In: Experimental Neurology, Vol. 127, No. 1, 01.01.1994, p. 76-93.

Research output: Contribution to journalArticle

Bunge, Mary B ; Holets, V. R. ; Bates, M. L. ; Clarke, T. S. ; Watson, B. D. / Characterization of photochemically induced spinal cord injury in the rat by light and electron microscopy. In: Experimental Neurology. 1994 ; Vol. 127, No. 1. pp. 76-93.
@article{dc204e96ca254239a24881997bae0a8e,
title = "Characterization of photochemically induced spinal cord injury in the rat by light and electron microscopy",
abstract = "This study characterized by light and electron microscopy 49 photochemically induced lesions in adult rat spinal cord at 16 time intervals from 2 days to 17 months after lesioning. Vascular thrombosis, resulting from an intravascular photochemical reaction induced by a rose bengal/laser beam interaction, led within a few days to an extensive area of tissue deterioration. This area, termed the 'lesion cavity' in contrast to the 'secondary cavity' observed later, was at least 6 mm long and, at the epicenter, extended across most of the spinal cord width and from the dorsal surface to a level near the central canal. The area of spared tissue, 43{\%} of the spinal cord cross-section at 2 days, did not change significantly between 2 and 56 days. Large numbers of macrophages populated the degenerating area by 5 days. This necrotic area was surrounded by a thin peripheral rim of largely intact white matter dorsally and laterally except at the epicenter where the white matter degenerated dorsomedially. In these peripheral regions, demyelination and, by 14 days, remyelination by both oligodendrocytes and Schwann cells (SCs) were evident. By 28 days, far more SCs (and meningeal cells) had entered the dorsal spinal cord, typically at the epicenter where meningeal thickening was most striking, and had migrated farther into the lesion cavity. These SCs and the axons they myelinated remained prominent in dorsal regions for many months, particularly at the epicenter; the proportion of SC to oligodendrocyte myelin diminished away from the epicenter. By 8 weeks, the lesion cavity was considerably diminished in size and thereafter it contained scattered macrophages, SC-myelinated axons, and blood vessels, primarily medially owing to flattening into clefts bilaterally. The cavity was partly bordered by astrocytes whose surfaces toward the lesion cavity were highly irregular and coated with basal lamina. Bare axons, consistently seen by electron microscopy at 5 days to 6 months, were typically ensconced among astrocytes starting at 28 days. Also by this time large, smoothly contoured, empty secondary cavities appeared, usually rostral and caudal to the epicenter; they did not increase in size or number with time. From 28 days to 17 months postlesion they occurred in 68{\%} of the lesioned spinal cords. The secondary cavity border was composed of cells thought to be astrocytes but, surprisingly, the luminal surface was smooth and lacked basal lamina, in contrast to the primary lesion cavity border. Thus, two types of cavities formed after photochemical lesioning. This lesioning technique may provide an appropriate milieu to better understand aspects of the vexing problem of post-traumatic syringomyelia in the human.",
author = "Bunge, {Mary B} and Holets, {V. R.} and Bates, {M. L.} and Clarke, {T. S.} and Watson, {B. D.}",
year = "1994",
month = "1",
day = "1",
doi = "10.1006/exnr.1994.1082",
language = "English",
volume = "127",
pages = "76--93",
journal = "Experimental Neurology",
issn = "0014-4886",
publisher = "Academic Press Inc.",
number = "1",

}

TY - JOUR

T1 - Characterization of photochemically induced spinal cord injury in the rat by light and electron microscopy

AU - Bunge, Mary B

AU - Holets, V. R.

AU - Bates, M. L.

AU - Clarke, T. S.

AU - Watson, B. D.

PY - 1994/1/1

Y1 - 1994/1/1

N2 - This study characterized by light and electron microscopy 49 photochemically induced lesions in adult rat spinal cord at 16 time intervals from 2 days to 17 months after lesioning. Vascular thrombosis, resulting from an intravascular photochemical reaction induced by a rose bengal/laser beam interaction, led within a few days to an extensive area of tissue deterioration. This area, termed the 'lesion cavity' in contrast to the 'secondary cavity' observed later, was at least 6 mm long and, at the epicenter, extended across most of the spinal cord width and from the dorsal surface to a level near the central canal. The area of spared tissue, 43% of the spinal cord cross-section at 2 days, did not change significantly between 2 and 56 days. Large numbers of macrophages populated the degenerating area by 5 days. This necrotic area was surrounded by a thin peripheral rim of largely intact white matter dorsally and laterally except at the epicenter where the white matter degenerated dorsomedially. In these peripheral regions, demyelination and, by 14 days, remyelination by both oligodendrocytes and Schwann cells (SCs) were evident. By 28 days, far more SCs (and meningeal cells) had entered the dorsal spinal cord, typically at the epicenter where meningeal thickening was most striking, and had migrated farther into the lesion cavity. These SCs and the axons they myelinated remained prominent in dorsal regions for many months, particularly at the epicenter; the proportion of SC to oligodendrocyte myelin diminished away from the epicenter. By 8 weeks, the lesion cavity was considerably diminished in size and thereafter it contained scattered macrophages, SC-myelinated axons, and blood vessels, primarily medially owing to flattening into clefts bilaterally. The cavity was partly bordered by astrocytes whose surfaces toward the lesion cavity were highly irregular and coated with basal lamina. Bare axons, consistently seen by electron microscopy at 5 days to 6 months, were typically ensconced among astrocytes starting at 28 days. Also by this time large, smoothly contoured, empty secondary cavities appeared, usually rostral and caudal to the epicenter; they did not increase in size or number with time. From 28 days to 17 months postlesion they occurred in 68% of the lesioned spinal cords. The secondary cavity border was composed of cells thought to be astrocytes but, surprisingly, the luminal surface was smooth and lacked basal lamina, in contrast to the primary lesion cavity border. Thus, two types of cavities formed after photochemical lesioning. This lesioning technique may provide an appropriate milieu to better understand aspects of the vexing problem of post-traumatic syringomyelia in the human.

AB - This study characterized by light and electron microscopy 49 photochemically induced lesions in adult rat spinal cord at 16 time intervals from 2 days to 17 months after lesioning. Vascular thrombosis, resulting from an intravascular photochemical reaction induced by a rose bengal/laser beam interaction, led within a few days to an extensive area of tissue deterioration. This area, termed the 'lesion cavity' in contrast to the 'secondary cavity' observed later, was at least 6 mm long and, at the epicenter, extended across most of the spinal cord width and from the dorsal surface to a level near the central canal. The area of spared tissue, 43% of the spinal cord cross-section at 2 days, did not change significantly between 2 and 56 days. Large numbers of macrophages populated the degenerating area by 5 days. This necrotic area was surrounded by a thin peripheral rim of largely intact white matter dorsally and laterally except at the epicenter where the white matter degenerated dorsomedially. In these peripheral regions, demyelination and, by 14 days, remyelination by both oligodendrocytes and Schwann cells (SCs) were evident. By 28 days, far more SCs (and meningeal cells) had entered the dorsal spinal cord, typically at the epicenter where meningeal thickening was most striking, and had migrated farther into the lesion cavity. These SCs and the axons they myelinated remained prominent in dorsal regions for many months, particularly at the epicenter; the proportion of SC to oligodendrocyte myelin diminished away from the epicenter. By 8 weeks, the lesion cavity was considerably diminished in size and thereafter it contained scattered macrophages, SC-myelinated axons, and blood vessels, primarily medially owing to flattening into clefts bilaterally. The cavity was partly bordered by astrocytes whose surfaces toward the lesion cavity were highly irregular and coated with basal lamina. Bare axons, consistently seen by electron microscopy at 5 days to 6 months, were typically ensconced among astrocytes starting at 28 days. Also by this time large, smoothly contoured, empty secondary cavities appeared, usually rostral and caudal to the epicenter; they did not increase in size or number with time. From 28 days to 17 months postlesion they occurred in 68% of the lesioned spinal cords. The secondary cavity border was composed of cells thought to be astrocytes but, surprisingly, the luminal surface was smooth and lacked basal lamina, in contrast to the primary lesion cavity border. Thus, two types of cavities formed after photochemical lesioning. This lesioning technique may provide an appropriate milieu to better understand aspects of the vexing problem of post-traumatic syringomyelia in the human.

UR - http://www.scopus.com/inward/record.url?scp=0028306456&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0028306456&partnerID=8YFLogxK

U2 - 10.1006/exnr.1994.1082

DO - 10.1006/exnr.1994.1082

M3 - Article

C2 - 8200439

AN - SCOPUS:0028306456

VL - 127

SP - 76

EP - 93

JO - Experimental Neurology

JF - Experimental Neurology

SN - 0014-4886

IS - 1

ER -