Characterization of high-affinity receptors for bombesin/gastrin releasing peptide on the human prostate cancer cell lines PC-3 and DU-145: Internalization of receptor bound 125I-(Tyr4) bombesin by tumor cells

H. Reile, P. E. Armatis, Andrew V Schally

Research output: Contribution to journalArticle

137 Citations (Scopus)

Abstract

Specific receptors for bombesin/gastrin releasing peptide (GRP) on the androgen-independent human prostate cancer cell lines PC-3 and DU-145 were characterized. No specific binding of 125I-[Tyr4]-bombesin to the androgen-dependent human prostate cancer cell line LNCaP was detectable. The binding of 125I-[Tyr4]-bombesin to PC-3 and DU-145 cells was found to be time- and temperature-dependent, saturable, and reversible. Scatchard analysis revealed a single class of binding sites with high affinity (K(d) 9.8 x 10-11 M for PC-3, and 9.1 x 10-11 M for DU-145 cells at 25°C) and with a binding capacity of 44,000 binding sites/cell and 19,000 binding sites/cell, respectively. Bound 125I-[Tyr4]-bombesin was rapidly internalized by PC-3 cells. The nonhydrolyzable GTP analog GTP-gamma-S caused a dose-dependent inhibition of 125I-[Tyr4]-bombesin binding to PC-3 and DU-145 cells, indicating that a G-protein (guanine nucleotide-binding protein) couples the bombesin receptor to intracellular effector systems. Bombesin and GRP(14-27) inhibited the binding of 125I-[Tyr4]-bombesin to both cell lines in a dose-dependent manner with inhibition constants (K(i)) of 0.5 nM and 0.4 nM, respectively. Both cell lines express the bombesin/GRP preferring bombesin receptor subtype, since, in displacement studies, neuromedin B was more than 200 times less potent than bombesin and GRP(14- 27) in inhibiting the binding of 125I-[Tyr4]-bombesin. Two synthetic bombesin/GRP antagonists, RC-3095 and RC-3110, powerfully inhibited the specific binding of 125I-[Tyr4]-bombesin with K(i) 0.92 nM and 0.26 nM on PC-3 cells, and 3.3 nM and 0.89 nM on DU-145 cells, respectively. These findings indicate that the PC-3 and DU-145 human prostate cancer cell lines possess specific high-affinity receptors for bombesin/GRP, and are suitable models for the evaluation of the antineoplastic activity of new bombesin/GRP antagonists in the treatment of androgen-independent prostate cancer.

Original languageEnglish
Pages (from-to)29-38
Number of pages10
JournalProstate
Volume25
Issue number1
DOIs
StatePublished - Aug 2 1994
Externally publishedYes

Fingerprint

Bombesin Receptors
Bombesin
Prostatic Neoplasms
Cell Line
Neoplasms
Gastrin-Releasing Peptide
Androgens
Binding Sites
Guanosine 5'-O-(3-Thiotriphosphate)
Guanine Nucleotides
Guanosine Triphosphate
Antineoplastic Agents

Keywords

  • bombesin
  • bombesin antagonist
  • bombesin receptor
  • prostate cancer cell line

ASJC Scopus subject areas

  • Urology

Cite this

@article{75acf1bc8cae4d2a9a118d0e90c2aac5,
title = "Characterization of high-affinity receptors for bombesin/gastrin releasing peptide on the human prostate cancer cell lines PC-3 and DU-145: Internalization of receptor bound 125I-(Tyr4) bombesin by tumor cells",
abstract = "Specific receptors for bombesin/gastrin releasing peptide (GRP) on the androgen-independent human prostate cancer cell lines PC-3 and DU-145 were characterized. No specific binding of 125I-[Tyr4]-bombesin to the androgen-dependent human prostate cancer cell line LNCaP was detectable. The binding of 125I-[Tyr4]-bombesin to PC-3 and DU-145 cells was found to be time- and temperature-dependent, saturable, and reversible. Scatchard analysis revealed a single class of binding sites with high affinity (K(d) 9.8 x 10-11 M for PC-3, and 9.1 x 10-11 M for DU-145 cells at 25°C) and with a binding capacity of 44,000 binding sites/cell and 19,000 binding sites/cell, respectively. Bound 125I-[Tyr4]-bombesin was rapidly internalized by PC-3 cells. The nonhydrolyzable GTP analog GTP-gamma-S caused a dose-dependent inhibition of 125I-[Tyr4]-bombesin binding to PC-3 and DU-145 cells, indicating that a G-protein (guanine nucleotide-binding protein) couples the bombesin receptor to intracellular effector systems. Bombesin and GRP(14-27) inhibited the binding of 125I-[Tyr4]-bombesin to both cell lines in a dose-dependent manner with inhibition constants (K(i)) of 0.5 nM and 0.4 nM, respectively. Both cell lines express the bombesin/GRP preferring bombesin receptor subtype, since, in displacement studies, neuromedin B was more than 200 times less potent than bombesin and GRP(14- 27) in inhibiting the binding of 125I-[Tyr4]-bombesin. Two synthetic bombesin/GRP antagonists, RC-3095 and RC-3110, powerfully inhibited the specific binding of 125I-[Tyr4]-bombesin with K(i) 0.92 nM and 0.26 nM on PC-3 cells, and 3.3 nM and 0.89 nM on DU-145 cells, respectively. These findings indicate that the PC-3 and DU-145 human prostate cancer cell lines possess specific high-affinity receptors for bombesin/GRP, and are suitable models for the evaluation of the antineoplastic activity of new bombesin/GRP antagonists in the treatment of androgen-independent prostate cancer.",
keywords = "bombesin, bombesin antagonist, bombesin receptor, prostate cancer cell line",
author = "H. Reile and Armatis, {P. E.} and Schally, {Andrew V}",
year = "1994",
month = "8",
day = "2",
doi = "10.1002/pros.2990250105",
language = "English",
volume = "25",
pages = "29--38",
journal = "Prostate",
issn = "0270-4137",
publisher = "Wiley-Liss Inc.",
number = "1",

}

TY - JOUR

T1 - Characterization of high-affinity receptors for bombesin/gastrin releasing peptide on the human prostate cancer cell lines PC-3 and DU-145

T2 - Internalization of receptor bound 125I-(Tyr4) bombesin by tumor cells

AU - Reile, H.

AU - Armatis, P. E.

AU - Schally, Andrew V

PY - 1994/8/2

Y1 - 1994/8/2

N2 - Specific receptors for bombesin/gastrin releasing peptide (GRP) on the androgen-independent human prostate cancer cell lines PC-3 and DU-145 were characterized. No specific binding of 125I-[Tyr4]-bombesin to the androgen-dependent human prostate cancer cell line LNCaP was detectable. The binding of 125I-[Tyr4]-bombesin to PC-3 and DU-145 cells was found to be time- and temperature-dependent, saturable, and reversible. Scatchard analysis revealed a single class of binding sites with high affinity (K(d) 9.8 x 10-11 M for PC-3, and 9.1 x 10-11 M for DU-145 cells at 25°C) and with a binding capacity of 44,000 binding sites/cell and 19,000 binding sites/cell, respectively. Bound 125I-[Tyr4]-bombesin was rapidly internalized by PC-3 cells. The nonhydrolyzable GTP analog GTP-gamma-S caused a dose-dependent inhibition of 125I-[Tyr4]-bombesin binding to PC-3 and DU-145 cells, indicating that a G-protein (guanine nucleotide-binding protein) couples the bombesin receptor to intracellular effector systems. Bombesin and GRP(14-27) inhibited the binding of 125I-[Tyr4]-bombesin to both cell lines in a dose-dependent manner with inhibition constants (K(i)) of 0.5 nM and 0.4 nM, respectively. Both cell lines express the bombesin/GRP preferring bombesin receptor subtype, since, in displacement studies, neuromedin B was more than 200 times less potent than bombesin and GRP(14- 27) in inhibiting the binding of 125I-[Tyr4]-bombesin. Two synthetic bombesin/GRP antagonists, RC-3095 and RC-3110, powerfully inhibited the specific binding of 125I-[Tyr4]-bombesin with K(i) 0.92 nM and 0.26 nM on PC-3 cells, and 3.3 nM and 0.89 nM on DU-145 cells, respectively. These findings indicate that the PC-3 and DU-145 human prostate cancer cell lines possess specific high-affinity receptors for bombesin/GRP, and are suitable models for the evaluation of the antineoplastic activity of new bombesin/GRP antagonists in the treatment of androgen-independent prostate cancer.

AB - Specific receptors for bombesin/gastrin releasing peptide (GRP) on the androgen-independent human prostate cancer cell lines PC-3 and DU-145 were characterized. No specific binding of 125I-[Tyr4]-bombesin to the androgen-dependent human prostate cancer cell line LNCaP was detectable. The binding of 125I-[Tyr4]-bombesin to PC-3 and DU-145 cells was found to be time- and temperature-dependent, saturable, and reversible. Scatchard analysis revealed a single class of binding sites with high affinity (K(d) 9.8 x 10-11 M for PC-3, and 9.1 x 10-11 M for DU-145 cells at 25°C) and with a binding capacity of 44,000 binding sites/cell and 19,000 binding sites/cell, respectively. Bound 125I-[Tyr4]-bombesin was rapidly internalized by PC-3 cells. The nonhydrolyzable GTP analog GTP-gamma-S caused a dose-dependent inhibition of 125I-[Tyr4]-bombesin binding to PC-3 and DU-145 cells, indicating that a G-protein (guanine nucleotide-binding protein) couples the bombesin receptor to intracellular effector systems. Bombesin and GRP(14-27) inhibited the binding of 125I-[Tyr4]-bombesin to both cell lines in a dose-dependent manner with inhibition constants (K(i)) of 0.5 nM and 0.4 nM, respectively. Both cell lines express the bombesin/GRP preferring bombesin receptor subtype, since, in displacement studies, neuromedin B was more than 200 times less potent than bombesin and GRP(14- 27) in inhibiting the binding of 125I-[Tyr4]-bombesin. Two synthetic bombesin/GRP antagonists, RC-3095 and RC-3110, powerfully inhibited the specific binding of 125I-[Tyr4]-bombesin with K(i) 0.92 nM and 0.26 nM on PC-3 cells, and 3.3 nM and 0.89 nM on DU-145 cells, respectively. These findings indicate that the PC-3 and DU-145 human prostate cancer cell lines possess specific high-affinity receptors for bombesin/GRP, and are suitable models for the evaluation of the antineoplastic activity of new bombesin/GRP antagonists in the treatment of androgen-independent prostate cancer.

KW - bombesin

KW - bombesin antagonist

KW - bombesin receptor

KW - prostate cancer cell line

UR - http://www.scopus.com/inward/record.url?scp=0028103841&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0028103841&partnerID=8YFLogxK

U2 - 10.1002/pros.2990250105

DO - 10.1002/pros.2990250105

M3 - Article

C2 - 8022709

AN - SCOPUS:0028103841

VL - 25

SP - 29

EP - 38

JO - Prostate

JF - Prostate

SN - 0270-4137

IS - 1

ER -