Center Manifolds, Hopf Bifurcation, and Normal Forms

Pierre Magal, Shigui Ruan

Research output: Chapter in Book/Report/Conference proceedingChapter

Abstract

The purpose of this chapter is to develop the center manifold theory, Hopf bifurcation theorem, and normal form theory for abstract semilinear Cauchy problems with non-dense domain.

Original languageEnglish (US)
Title of host publicationApplied Mathematical Sciences (Switzerland)
PublisherSpringer
Pages249-308
Number of pages60
DOIs
StatePublished - Jan 1 2018

Publication series

NameApplied Mathematical Sciences (Switzerland)
Volume201
ISSN (Print)0066-5452
ISSN (Electronic)2196-968X

Fingerprint

Normal Form Theory
Hopf bifurcation
Center Manifold
Semilinear
Hopf Bifurcation
Normal Form
Cauchy Problem
Theorem

ASJC Scopus subject areas

  • Applied Mathematics

Cite this

Magal, P., & Ruan, S. (2018). Center Manifolds, Hopf Bifurcation, and Normal Forms. In Applied Mathematical Sciences (Switzerland) (pp. 249-308). (Applied Mathematical Sciences (Switzerland); Vol. 201). Springer. https://doi.org/10.1007/978-3-030-01506-0_6

Center Manifolds, Hopf Bifurcation, and Normal Forms. / Magal, Pierre; Ruan, Shigui.

Applied Mathematical Sciences (Switzerland). Springer, 2018. p. 249-308 (Applied Mathematical Sciences (Switzerland); Vol. 201).

Research output: Chapter in Book/Report/Conference proceedingChapter

Magal, P & Ruan, S 2018, Center Manifolds, Hopf Bifurcation, and Normal Forms. in Applied Mathematical Sciences (Switzerland). Applied Mathematical Sciences (Switzerland), vol. 201, Springer, pp. 249-308. https://doi.org/10.1007/978-3-030-01506-0_6
Magal P, Ruan S. Center Manifolds, Hopf Bifurcation, and Normal Forms. In Applied Mathematical Sciences (Switzerland). Springer. 2018. p. 249-308. (Applied Mathematical Sciences (Switzerland)). https://doi.org/10.1007/978-3-030-01506-0_6
Magal, Pierre ; Ruan, Shigui. / Center Manifolds, Hopf Bifurcation, and Normal Forms. Applied Mathematical Sciences (Switzerland). Springer, 2018. pp. 249-308 (Applied Mathematical Sciences (Switzerland)).
@inbook{ac12a5f686d94a1980737b5c3b3ce098,
title = "Center Manifolds, Hopf Bifurcation, and Normal Forms",
abstract = "The purpose of this chapter is to develop the center manifold theory, Hopf bifurcation theorem, and normal form theory for abstract semilinear Cauchy problems with non-dense domain.",
author = "Pierre Magal and Shigui Ruan",
year = "2018",
month = "1",
day = "1",
doi = "10.1007/978-3-030-01506-0_6",
language = "English (US)",
series = "Applied Mathematical Sciences (Switzerland)",
publisher = "Springer",
pages = "249--308",
booktitle = "Applied Mathematical Sciences (Switzerland)",

}

TY - CHAP

T1 - Center Manifolds, Hopf Bifurcation, and Normal Forms

AU - Magal, Pierre

AU - Ruan, Shigui

PY - 2018/1/1

Y1 - 2018/1/1

N2 - The purpose of this chapter is to develop the center manifold theory, Hopf bifurcation theorem, and normal form theory for abstract semilinear Cauchy problems with non-dense domain.

AB - The purpose of this chapter is to develop the center manifold theory, Hopf bifurcation theorem, and normal form theory for abstract semilinear Cauchy problems with non-dense domain.

UR - http://www.scopus.com/inward/record.url?scp=85068108384&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85068108384&partnerID=8YFLogxK

U2 - 10.1007/978-3-030-01506-0_6

DO - 10.1007/978-3-030-01506-0_6

M3 - Chapter

T3 - Applied Mathematical Sciences (Switzerland)

SP - 249

EP - 308

BT - Applied Mathematical Sciences (Switzerland)

PB - Springer

ER -