Cardinality and the simplex tableau for the set partitioning problem

Anito Joseph, Edward K. Baker

Research output: Contribution to journalArticle

Abstract

In this work, we show how cardinality-related information for the set partitioning problem s represented within the simplex tableau and how a fractional solution can be interpreted in terms of unresolved solution cardinality. We include a cardinality row within the linear programming relaxation of the set partitioning problem to demonstrate the associated cardinality-related information present in the tableau. Working with a basic feasible solution, the cardinality row is shown to provide valuable information for branching along the cardinality dimension of the solution space of the problem. It is shown that cardinality information may be derived from the simplex tableau for any subset of structural variables in the problem. An illustrative example and computational results for problems from the literature are presented.

Original languageEnglish (US)
Pages (from-to)49-60
Number of pages12
JournalOperations Research/ Computer Science Interfaces Series
Volume37
StatePublished - Dec 1 2007

Fingerprint

Linear programming
Set partitioning

Keywords

  • Cardinality
  • Set partitioning
  • Simplex tableau

ASJC Scopus subject areas

  • Management Science and Operations Research
  • Computer Science(all)

Cite this

Cardinality and the simplex tableau for the set partitioning problem. / Joseph, Anito; Baker, Edward K.

In: Operations Research/ Computer Science Interfaces Series, Vol. 37, 01.12.2007, p. 49-60.

Research output: Contribution to journalArticle

@article{ce548d7923c64b349f7221a396d96eca,
title = "Cardinality and the simplex tableau for the set partitioning problem",
abstract = "In this work, we show how cardinality-related information for the set partitioning problem s represented within the simplex tableau and how a fractional solution can be interpreted in terms of unresolved solution cardinality. We include a cardinality row within the linear programming relaxation of the set partitioning problem to demonstrate the associated cardinality-related information present in the tableau. Working with a basic feasible solution, the cardinality row is shown to provide valuable information for branching along the cardinality dimension of the solution space of the problem. It is shown that cardinality information may be derived from the simplex tableau for any subset of structural variables in the problem. An illustrative example and computational results for problems from the literature are presented.",
keywords = "Cardinality, Set partitioning, Simplex tableau",
author = "Anito Joseph and Baker, {Edward K.}",
year = "2007",
month = "12",
day = "1",
language = "English (US)",
volume = "37",
pages = "49--60",
journal = "Operations Research/ Computer Science Interfaces Series",
issn = "1387-666X",
publisher = "Springer Science + Business Media",

}

TY - JOUR

T1 - Cardinality and the simplex tableau for the set partitioning problem

AU - Joseph, Anito

AU - Baker, Edward K.

PY - 2007/12/1

Y1 - 2007/12/1

N2 - In this work, we show how cardinality-related information for the set partitioning problem s represented within the simplex tableau and how a fractional solution can be interpreted in terms of unresolved solution cardinality. We include a cardinality row within the linear programming relaxation of the set partitioning problem to demonstrate the associated cardinality-related information present in the tableau. Working with a basic feasible solution, the cardinality row is shown to provide valuable information for branching along the cardinality dimension of the solution space of the problem. It is shown that cardinality information may be derived from the simplex tableau for any subset of structural variables in the problem. An illustrative example and computational results for problems from the literature are presented.

AB - In this work, we show how cardinality-related information for the set partitioning problem s represented within the simplex tableau and how a fractional solution can be interpreted in terms of unresolved solution cardinality. We include a cardinality row within the linear programming relaxation of the set partitioning problem to demonstrate the associated cardinality-related information present in the tableau. Working with a basic feasible solution, the cardinality row is shown to provide valuable information for branching along the cardinality dimension of the solution space of the problem. It is shown that cardinality information may be derived from the simplex tableau for any subset of structural variables in the problem. An illustrative example and computational results for problems from the literature are presented.

KW - Cardinality

KW - Set partitioning

KW - Simplex tableau

UR - http://www.scopus.com/inward/record.url?scp=84888594877&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84888594877&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:84888594877

VL - 37

SP - 49

EP - 60

JO - Operations Research/ Computer Science Interfaces Series

JF - Operations Research/ Computer Science Interfaces Series

SN - 1387-666X

ER -