Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals

Soumya Niyogi, Chris M. Wood

Research output: Contribution to journalArticle

445 Citations (Scopus)

Abstract

The biotic ligand model (BLM) is a mechanistic approach that greatly improves our ability to generate site-specific ambient water quality criteria (AWQC) for metals in the natural environment relative to conventional relationships based only on hardness. The model is flexible; all aspects of water chemistry that affect toxicity can be included, so the BLM integrates the concept of bioavailability into AWQC-in essence the computational equivalent of water effect ratio (WER) testing. The theory of the BLM evolved from the gill surface interaction model (GSIM) and the free ion activity model (FIAM). Using an equilibrium geochemical modeling framework, the BLM incorporates the competition of the free metal ion with other naturally occurring cations (e.g., Ca2+, Na+, Mg2+, H+), together with complexation by abiotic ligands [e.g., DOM (dissolved organic matter), chloride, carbonates, sulfide] for binding with the biotic ligand, the site of toxic action on the organism. On the basis of fish gill research, the biotic ligands appear to be active ion uptake pathways (e.g., Na+ transporters for copper and silver, Ca2+ transporters for zinc, cadmium, lead, and cobalt), whose geochemical characteristics (affinity = log K, capacity = B max) can be quantified in short-term (3-24 h) in vivo gill binding tests. In general, the greater the toxicity of a particular metal, the higher the log K. The BLM quantitatively relates short-term binding to acute toxicity, with the LA50 (lethal accumulation) being predictive of the LC 50 (generally 96 h for fish, 48 h for daphnids). We critically evaluate currently available BLMs for copper, silver, zinc, and nickel and gill binding approaches for cadmium, lead, and cobalt on which BLMs could be based. Most BLMs originate from tests with fish and have been recalibrated for more sensitive daphnids by adjustment of LA50 so as to fit the results of toxicity testing. Issues of concern include the arbitrary nature of LA 50 adjustments; possible mechanistic differences between daphnids and fish that may alter log K values, particularly for hardness cations (Ca 2+, Mg2+); assumption of fixed biotic ligand characteristics in the face of evidence that they may change in response to acclimation and diet; difficulties in dealing with DOM and incorporating its heterogeneity into the modeling framework; and the paucity of validation exercises on natural water data sets. Important needs include characterization of biotic ligand properties at the molecular level; development of in vitro BLMs, extension of the BLM approach to a wider range of organisms, to the estuarine and marine environment, and to deal with metal mixtures; and further development of BLM frameworks to predict chronic toxicity and thereby generate chronic AWQC.

Original languageEnglish
Pages (from-to)6177-6192
Number of pages16
JournalEnvironmental Science and Technology
Volume38
Issue number23
DOIs
StatePublished - Dec 1 2004

Fingerprint

ligand
Water quality
Metals
Ligands
water quality
metal
Toxicity
Fish
toxicity
fish
Cobalt
Cadmium
Silver
dissolved organic matter
cobalt
Biological materials
hardness
Cations
ion
Water

ASJC Scopus subject areas

  • Environmental Engineering
  • Environmental Science(all)
  • Environmental Chemistry

Cite this

Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals. / Niyogi, Soumya; Wood, Chris M.

In: Environmental Science and Technology, Vol. 38, No. 23, 01.12.2004, p. 6177-6192.

Research output: Contribution to journalArticle

@article{c7a9b2d1280f4eb79e2d00d49188707c,
title = "Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals",
abstract = "The biotic ligand model (BLM) is a mechanistic approach that greatly improves our ability to generate site-specific ambient water quality criteria (AWQC) for metals in the natural environment relative to conventional relationships based only on hardness. The model is flexible; all aspects of water chemistry that affect toxicity can be included, so the BLM integrates the concept of bioavailability into AWQC-in essence the computational equivalent of water effect ratio (WER) testing. The theory of the BLM evolved from the gill surface interaction model (GSIM) and the free ion activity model (FIAM). Using an equilibrium geochemical modeling framework, the BLM incorporates the competition of the free metal ion with other naturally occurring cations (e.g., Ca2+, Na+, Mg2+, H+), together with complexation by abiotic ligands [e.g., DOM (dissolved organic matter), chloride, carbonates, sulfide] for binding with the biotic ligand, the site of toxic action on the organism. On the basis of fish gill research, the biotic ligands appear to be active ion uptake pathways (e.g., Na+ transporters for copper and silver, Ca2+ transporters for zinc, cadmium, lead, and cobalt), whose geochemical characteristics (affinity = log K, capacity = B max) can be quantified in short-term (3-24 h) in vivo gill binding tests. In general, the greater the toxicity of a particular metal, the higher the log K. The BLM quantitatively relates short-term binding to acute toxicity, with the LA50 (lethal accumulation) being predictive of the LC 50 (generally 96 h for fish, 48 h for daphnids). We critically evaluate currently available BLMs for copper, silver, zinc, and nickel and gill binding approaches for cadmium, lead, and cobalt on which BLMs could be based. Most BLMs originate from tests with fish and have been recalibrated for more sensitive daphnids by adjustment of LA50 so as to fit the results of toxicity testing. Issues of concern include the arbitrary nature of LA 50 adjustments; possible mechanistic differences between daphnids and fish that may alter log K values, particularly for hardness cations (Ca 2+, Mg2+); assumption of fixed biotic ligand characteristics in the face of evidence that they may change in response to acclimation and diet; difficulties in dealing with DOM and incorporating its heterogeneity into the modeling framework; and the paucity of validation exercises on natural water data sets. Important needs include characterization of biotic ligand properties at the molecular level; development of in vitro BLMs, extension of the BLM approach to a wider range of organisms, to the estuarine and marine environment, and to deal with metal mixtures; and further development of BLM frameworks to predict chronic toxicity and thereby generate chronic AWQC.",
author = "Soumya Niyogi and Wood, {Chris M.}",
year = "2004",
month = "12",
day = "1",
doi = "10.1021/es0496524",
language = "English",
volume = "38",
pages = "6177--6192",
journal = "Environmental Science & Technology",
issn = "0013-936X",
publisher = "American Chemical Society",
number = "23",

}

TY - JOUR

T1 - Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals

AU - Niyogi, Soumya

AU - Wood, Chris M.

PY - 2004/12/1

Y1 - 2004/12/1

N2 - The biotic ligand model (BLM) is a mechanistic approach that greatly improves our ability to generate site-specific ambient water quality criteria (AWQC) for metals in the natural environment relative to conventional relationships based only on hardness. The model is flexible; all aspects of water chemistry that affect toxicity can be included, so the BLM integrates the concept of bioavailability into AWQC-in essence the computational equivalent of water effect ratio (WER) testing. The theory of the BLM evolved from the gill surface interaction model (GSIM) and the free ion activity model (FIAM). Using an equilibrium geochemical modeling framework, the BLM incorporates the competition of the free metal ion with other naturally occurring cations (e.g., Ca2+, Na+, Mg2+, H+), together with complexation by abiotic ligands [e.g., DOM (dissolved organic matter), chloride, carbonates, sulfide] for binding with the biotic ligand, the site of toxic action on the organism. On the basis of fish gill research, the biotic ligands appear to be active ion uptake pathways (e.g., Na+ transporters for copper and silver, Ca2+ transporters for zinc, cadmium, lead, and cobalt), whose geochemical characteristics (affinity = log K, capacity = B max) can be quantified in short-term (3-24 h) in vivo gill binding tests. In general, the greater the toxicity of a particular metal, the higher the log K. The BLM quantitatively relates short-term binding to acute toxicity, with the LA50 (lethal accumulation) being predictive of the LC 50 (generally 96 h for fish, 48 h for daphnids). We critically evaluate currently available BLMs for copper, silver, zinc, and nickel and gill binding approaches for cadmium, lead, and cobalt on which BLMs could be based. Most BLMs originate from tests with fish and have been recalibrated for more sensitive daphnids by adjustment of LA50 so as to fit the results of toxicity testing. Issues of concern include the arbitrary nature of LA 50 adjustments; possible mechanistic differences between daphnids and fish that may alter log K values, particularly for hardness cations (Ca 2+, Mg2+); assumption of fixed biotic ligand characteristics in the face of evidence that they may change in response to acclimation and diet; difficulties in dealing with DOM and incorporating its heterogeneity into the modeling framework; and the paucity of validation exercises on natural water data sets. Important needs include characterization of biotic ligand properties at the molecular level; development of in vitro BLMs, extension of the BLM approach to a wider range of organisms, to the estuarine and marine environment, and to deal with metal mixtures; and further development of BLM frameworks to predict chronic toxicity and thereby generate chronic AWQC.

AB - The biotic ligand model (BLM) is a mechanistic approach that greatly improves our ability to generate site-specific ambient water quality criteria (AWQC) for metals in the natural environment relative to conventional relationships based only on hardness. The model is flexible; all aspects of water chemistry that affect toxicity can be included, so the BLM integrates the concept of bioavailability into AWQC-in essence the computational equivalent of water effect ratio (WER) testing. The theory of the BLM evolved from the gill surface interaction model (GSIM) and the free ion activity model (FIAM). Using an equilibrium geochemical modeling framework, the BLM incorporates the competition of the free metal ion with other naturally occurring cations (e.g., Ca2+, Na+, Mg2+, H+), together with complexation by abiotic ligands [e.g., DOM (dissolved organic matter), chloride, carbonates, sulfide] for binding with the biotic ligand, the site of toxic action on the organism. On the basis of fish gill research, the biotic ligands appear to be active ion uptake pathways (e.g., Na+ transporters for copper and silver, Ca2+ transporters for zinc, cadmium, lead, and cobalt), whose geochemical characteristics (affinity = log K, capacity = B max) can be quantified in short-term (3-24 h) in vivo gill binding tests. In general, the greater the toxicity of a particular metal, the higher the log K. The BLM quantitatively relates short-term binding to acute toxicity, with the LA50 (lethal accumulation) being predictive of the LC 50 (generally 96 h for fish, 48 h for daphnids). We critically evaluate currently available BLMs for copper, silver, zinc, and nickel and gill binding approaches for cadmium, lead, and cobalt on which BLMs could be based. Most BLMs originate from tests with fish and have been recalibrated for more sensitive daphnids by adjustment of LA50 so as to fit the results of toxicity testing. Issues of concern include the arbitrary nature of LA 50 adjustments; possible mechanistic differences between daphnids and fish that may alter log K values, particularly for hardness cations (Ca 2+, Mg2+); assumption of fixed biotic ligand characteristics in the face of evidence that they may change in response to acclimation and diet; difficulties in dealing with DOM and incorporating its heterogeneity into the modeling framework; and the paucity of validation exercises on natural water data sets. Important needs include characterization of biotic ligand properties at the molecular level; development of in vitro BLMs, extension of the BLM approach to a wider range of organisms, to the estuarine and marine environment, and to deal with metal mixtures; and further development of BLM frameworks to predict chronic toxicity and thereby generate chronic AWQC.

UR - http://www.scopus.com/inward/record.url?scp=9644289510&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=9644289510&partnerID=8YFLogxK

U2 - 10.1021/es0496524

DO - 10.1021/es0496524

M3 - Article

C2 - 15597870

AN - SCOPUS:9644289510

VL - 38

SP - 6177

EP - 6192

JO - Environmental Science & Technology

JF - Environmental Science & Technology

SN - 0013-936X

IS - 23

ER -