Bioreactor maintained living skin matrix

Mitchell R. Ladd, Sang Jin Lee, Anthony Atala, James J. Yoo

Research output: Contribution to journalArticlepeer-review

23 Scopus citations


Numerous reconstructive procedures result in wounds that require skin grafting. Often, the amount of tissue available from donor sites is limited. In vivo tissue expanders have been used clinically to generate larger sections of skin, and other methods exist to cover large wounds, but all have significant limitations. We investigated whether these difficulties could be overcome by increasing the surface area of skin in vitro while maintaining tissue viability. Human foreskin was incrementally expanded in a computer-controlled bioreactor system over 6 days to increase its surface dimensions under culture conditions. Morphological, ultrastructural, and mechanical properties of the foreskin were evaluated before and after expansion using histology, scanning electron microscopy, mercury porosimetry, and tensile testing. The surface area of the tissue was 110.7% ± 12.2% greater, with maintenance of cell viability and proliferative potential. Histomorphological and ultrastructural analyses showed that dermal structural integrity was preserved. The pore diameter of the expanded skin was 64.49% ± 32.8% greater. The mechanical properties were not adversely affected. These findings show that expansion of living skin matrices can be achieved using a computer-controlled bioreactor system. This technique provides an opportunity to generate large amounts of skin for reconstructive procedures.

Original languageEnglish (US)
Pages (from-to)861-868
Number of pages8
JournalTissue Engineering - Part A
Issue number4
StatePublished - Apr 1 2009

ASJC Scopus subject areas

  • Bioengineering
  • Biochemistry
  • Biomaterials
  • Biomedical Engineering


Dive into the research topics of 'Bioreactor maintained living skin matrix'. Together they form a unique fingerprint.

Cite this