Biomaterials for tissue engineering

Byung Soo Kim, Carlos E. Baez, Anthony Atala

Research output: Contribution to journalArticlepeer-review

254 Scopus citations


Biomaterials play a critical role in the engineering of new functional genitourinary tissues for the replacement of lost or malfunctioning tissues. They provide a temporary scaffolding to guide new tissue growth and organization and may provide bioactive signals (e.g., cell-adhesion peptides and growth factors) required for the retention of tissue-specific gene expression. A variety of biomaterials, which can be classified into three types - naturally derived materials (e.g., collagen and alginate), acellular tissue matrices (e.g., bladder submucosa and small-intestinal submucosa), and synthetic polymers [e.g., polyglycolic acid, polylactic acid, and poly(lactic-co-glycolic acid)] - have proved to be useful in the reconstruction of a number of genitourinary tissues in animal models. Some of these materials are currently being used clinically for genitourinary applications. Ultimately, the development or selection of appropriate biomaterials may allow the engineering of multiple types of functional genitourinary tissues.

Original languageEnglish (US)
Pages (from-to)2-9
Number of pages8
JournalWorld journal of urology
Issue number1
StatePublished - Jan 1 2000

ASJC Scopus subject areas

  • Urology


Dive into the research topics of 'Biomaterials for tissue engineering'. Together they form a unique fingerprint.

Cite this