Autodidactic neurosurgeon: Collaborative deep inference for mobile edge intelligence via online learning

Letian Zhang, Lixing Chen, Jie Xu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Recent breakthroughs in deep learning (DL) have led to the emergence of many intelligent mobile applications and services, but in the meanwhile also pose unprecedented computing challenges on resource-constrained mobile devices. This paper builds a collaborative deep inference system between a resource-constrained mobile device and a powerful edge server, aiming at joining the power of both on-device processing and computation offloading. The basic idea of this system is to partition a deep neural network (DNN) into a front-end part running on the mobile device and a back-end part running on the edge server, with the key challenge being how to locate the optimal partition point to minimize the end-to-end inference delay. Unlike existing efforts on DNN partitioning that rely heavily on a dedicated offline profiling stage to search for the optimal partition point, our system has a built-in online learning module, called Autodidactic Neurosurgeon (ANS), to automatically learn the optimal partition point on-the-fly. Therefore, ANS is able to closely follow the changes of the system environment by generating new knowledge for adaptive decision making. The core of ANS is a novel contextual bandit learning algorithm, called µLinUCB, which not only has provable theoretical learning performance guarantee but also is ultra-lightweight for easy real-world implementation. We implement our system on a video stream object detection testbed to validate the design of ANS and evaluate its performance. The experiments show that ANS significantly outperforms state-of-the-art benchmarks in terms of tracking system changes and reducing the end-to-end inference delay.

Original languageEnglish (US)
Title of host publicationThe Web Conference 2021 - Proceedings of the World Wide Web Conference, WWW 2021
PublisherAssociation for Computing Machinery, Inc
Pages3111-3123
Number of pages13
ISBN (Electronic)9781450383127
DOIs
StatePublished - Apr 19 2021
Event2021 World Wide Web Conference, WWW 2021 - Ljubljana, Slovenia
Duration: Apr 19 2021Apr 23 2021

Publication series

NameThe Web Conference 2021 - Proceedings of the World Wide Web Conference, WWW 2021

Conference

Conference2021 World Wide Web Conference, WWW 2021
Country/TerritorySlovenia
CityLjubljana
Period4/19/214/23/21

Keywords

  • Deep learning inference
  • Edge computing
  • Mobile object detection system
  • Online learning

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Software

Fingerprint

Dive into the research topics of 'Autodidactic neurosurgeon: Collaborative deep inference for mobile edge intelligence via online learning'. Together they form a unique fingerprint.

Cite this