Attitudes toward using COVID-19 mHealth tools among adults with chronic health conditions: Secondary data analysis of the COVID-19 impact survey

Marlene Camacho-Rivera, Jessica Yasmine Islam, Argelis Rivera, Denise Christina Vidot

Research output: Contribution to journalArticlepeer-review

Abstract

Background: Adults with chronic conditions are disproportionately burdened by COVID-19 morbidity and mortality. Although COVID-19 mobile health (mHealth) apps have emerged, research on attitudes toward using COVID-19 mHealth tools among those with chronic conditions is scarce. Objective: This study aimed to examine attitudes toward COVID-19, identify determinants of COVID-19 mHealth tool use across demographic and health-related characteristics, and evaluate associations between chronic health conditions and attitudes toward using COVID-19 mHealth tools (eg, mHealth or web-based methods for tracking COVID-19 exposures, symptoms, and recommendations). Methods: We used nationally representative data from the COVID-19 Impact Survey collected from April to June 2020 (n=10,760). Primary exposure was a history of chronic conditions, which were defined as self-reported diagnoses of cardiometabolic, respiratory, immune-related, and mental health conditions and overweight/obesity. Primary outcomes were attitudes toward COVID-19 mHealth tools, including the likelihood of using (1) a mobile phone app to track COVID-19 symptoms and receive recommendations; (2) a website to track COVID-19 symptoms, track location, and receive recommendations; and (3) an app using location data to track potential COVID-19 exposure. Outcome response options for COVID-19 mHealth tool use were extremely/very likely, moderately likely, or not too likely/not likely at all. Multinomial logistic regression was used to compare the likelihood of COVID-19 mHealth tool use between people with different chronic health conditions, with not too likely/not likely at all responses used as the reference category for each outcome. We evaluated the determinants of each COVID-19 mHealth intervention using Poisson regression. Results: Of the 10,760 respondents, 21.8% of respondents were extremely/very likely to use a mobile phone app or a website to track their COVID-19 symptoms and receive recommendations. Additionally, 24.1% of respondents were extremely/very likely to use a mobile phone app to track their location and receive push notifications about whether they have been exposed to COVID-19. After adjusting for age, race/ethnicity, sex, socioeconomic status, and residence, adults with mental health conditions were the most likely to report being extremely/very or moderately likely to use each mHealth intervention compared to those without such conditions. Adults with respiratory-related chronic diseases were extremely/very (conditional odds ratio 1.16, 95% CI 1.00-1.35) and moderately likely (conditional odds ratio 1.23, 95% CI 1.04-1.45) to use a mobile phone app to track their location and receive push notifications about whether they have been exposed to COVID-19. Conclusions: Our study demonstrates that attitudes toward using COVID-19 mHealth tools vary widely across modalities (eg, web-based method vs app) and chronic health conditions. These findings may inform the adoption of long-term engagement with COVID-19 apps, which is crucial for determining their potential in reducing disparities in COVID-19 morbidity and mortality among individuals with chronic health conditions.

Original languageEnglish (US)
Article numbere24693
JournalJMIR mHealth and uHealth
Volume8
Issue number12
DOIs
StatePublished - Dec 2020

Keywords

  • Attitude
  • Chronic disease
  • Chronic health conditions
  • Contact tracing
  • COVID-19
  • Data analysis
  • Disparity
  • Health disparities
  • MHealth
  • Mobile app
  • Perception
  • Smartphone

ASJC Scopus subject areas

  • Health Informatics

Fingerprint Dive into the research topics of 'Attitudes toward using COVID-19 mHealth tools among adults with chronic health conditions: Secondary data analysis of the COVID-19 impact survey'. Together they form a unique fingerprint.

Cite this