Atmospheric sulfur cycling in the southeastern Pacific-longitudinal distribution, vertical profile, and diel variability observed during VOCALS-REx

M. Yang, B. J. Huebert, B. W. Blomquist, S. G. Howell, L. M. Shank, C. S. McNaughton, A. D. Clarke, L. N. Hawkins, L. M. Russell, D. S. Covert, D. J. Coffman, T. S. Bates, P. K. Quinn, N. Zagorac, A. R. Bandy, S. P. De Szoeke, P. D. Zuidema, S. C. Tucker, W. A. Brewer, K. B. BenedictJ. L. Collett

Research output: Contribution to journalArticle

33 Scopus citations

Abstract

Dimethylsulfide (DMS) emitted from the ocean is a biogenic precursor gas for sulfur dioxide (SO2) and non-sea-salt sulfate aerosols (SO42−). During the VAMOS-Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) in 2008, multiple instrumented platforms were deployed in the Southeastern Pacific (SEP) off the coast of Chile and Peru to study the linkage between aerosols and stratocumulus clouds. We present here observations from the NOAA Ship Ronald H. Brown and the NSF/NCAR C-130 aircraft along ∼20° S from the coast (70° W) to a remote marine atmosphere (85° W). While SO42− and SO2 concentrations were distinctly elevated above background levels in the coastal marine boundary layer (MBL) due to anthropogenic influence (∼800 and 80 pptv, respectively), their concentrations rapidly decreased west of 78° W (∼100 and 25 pptv). In the remote region, entrainment from the free troposphere (FT) increased MBL SO2 burden at a rate of 0.05 ± 0.02 1/4moles m−2 day−1 and diluted MBL SO42 burden at a rate of 0.5 ± 0.3 m-2 day-1, while the sea-to-air DMS flux (3.8 ± 0.4 4moles m2 day-1) remained the predominant source of sulfur mass to the MBL. In-cloud oxidation was found to be the most important mechanism for SO2 removal and in situ SO42 production. Surface SO42 concentration in the remote MBL displayed pronounced diel variability, increasing rapidly in the first few hours after sunset and decaying for the rest of the day. We theorize that the increase in SO42 was due to nighttime recoupling of the MBL that mixed down cloud-processed air, while decoupling and sporadic precipitation scavenging were responsible for the daytime decline in SO42-.

Original languageEnglish (US)
Pages (from-to)5079-5097
Number of pages19
JournalAtmospheric Chemistry and Physics
Volume11
Issue number10
DOIs
StatePublished - Jun 8 2011

    Fingerprint

ASJC Scopus subject areas

  • Atmospheric Science

Cite this

Yang, M., Huebert, B. J., Blomquist, B. W., Howell, S. G., Shank, L. M., McNaughton, C. S., Clarke, A. D., Hawkins, L. N., Russell, L. M., Covert, D. S., Coffman, D. J., Bates, T. S., Quinn, P. K., Zagorac, N., Bandy, A. R., De Szoeke, S. P., Zuidema, P. D., Tucker, S. C., Brewer, W. A., ... Collett, J. L. (2011). Atmospheric sulfur cycling in the southeastern Pacific-longitudinal distribution, vertical profile, and diel variability observed during VOCALS-REx. Atmospheric Chemistry and Physics, 11(10), 5079-5097. https://doi.org/10.5194/acp-11-5079-2011