Asymmetric orbital-lattice interactions in ultrathin correlated oxide films

J. Chakhalian, J. M. Rondinelli, Jian Liu, B. A. Gray, M. Kareev, E. J. Moon, N. Prasai, Joshua Cohn, M. Varela, I. C. Tung, M. J. Bedzyk, S. G. Altendorf, F. Strigari, B. Dabrowski, L. H. Tjeng, P. J. Ryan, J. W. Freeland

Research output: Contribution to journalArticle

109 Citations (Scopus)

Abstract

Using resonant x-ray spectroscopies combined with density functional calculations, we find an asymmetric biaxial strain-induced d-orbital response in ultrathin films of the correlated metal LaNiO3 which are not accessible in the bulk. The sign of the misfit strain governs the stability of an octahedral "breathing" distortion, which, in turn, produces an emergent charge-ordered ground state with an altered ligand-hole density and bond covalency. Control of this new mechanism opens a pathway to rational orbital engineering, providing a platform for artificially designed Mott materials.

Original languageEnglish (US)
Article number116805
JournalPhysical Review Letters
Volume107
Issue number11
DOIs
StatePublished - Sep 9 2011

Fingerprint

oxide films
orbitals
breathing
x ray spectroscopy
platforms
interactions
engineering
ligands
ground state
metals

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Cite this

Chakhalian, J., Rondinelli, J. M., Liu, J., Gray, B. A., Kareev, M., Moon, E. J., ... Freeland, J. W. (2011). Asymmetric orbital-lattice interactions in ultrathin correlated oxide films. Physical Review Letters, 107(11), [116805]. https://doi.org/10.1103/PhysRevLett.107.116805

Asymmetric orbital-lattice interactions in ultrathin correlated oxide films. / Chakhalian, J.; Rondinelli, J. M.; Liu, Jian; Gray, B. A.; Kareev, M.; Moon, E. J.; Prasai, N.; Cohn, Joshua; Varela, M.; Tung, I. C.; Bedzyk, M. J.; Altendorf, S. G.; Strigari, F.; Dabrowski, B.; Tjeng, L. H.; Ryan, P. J.; Freeland, J. W.

In: Physical Review Letters, Vol. 107, No. 11, 116805, 09.09.2011.

Research output: Contribution to journalArticle

Chakhalian, J, Rondinelli, JM, Liu, J, Gray, BA, Kareev, M, Moon, EJ, Prasai, N, Cohn, J, Varela, M, Tung, IC, Bedzyk, MJ, Altendorf, SG, Strigari, F, Dabrowski, B, Tjeng, LH, Ryan, PJ & Freeland, JW 2011, 'Asymmetric orbital-lattice interactions in ultrathin correlated oxide films', Physical Review Letters, vol. 107, no. 11, 116805. https://doi.org/10.1103/PhysRevLett.107.116805
Chakhalian J, Rondinelli JM, Liu J, Gray BA, Kareev M, Moon EJ et al. Asymmetric orbital-lattice interactions in ultrathin correlated oxide films. Physical Review Letters. 2011 Sep 9;107(11). 116805. https://doi.org/10.1103/PhysRevLett.107.116805
Chakhalian, J. ; Rondinelli, J. M. ; Liu, Jian ; Gray, B. A. ; Kareev, M. ; Moon, E. J. ; Prasai, N. ; Cohn, Joshua ; Varela, M. ; Tung, I. C. ; Bedzyk, M. J. ; Altendorf, S. G. ; Strigari, F. ; Dabrowski, B. ; Tjeng, L. H. ; Ryan, P. J. ; Freeland, J. W. / Asymmetric orbital-lattice interactions in ultrathin correlated oxide films. In: Physical Review Letters. 2011 ; Vol. 107, No. 11.
@article{2172e796156744e1b2ac37a605a06f0e,
title = "Asymmetric orbital-lattice interactions in ultrathin correlated oxide films",
abstract = "Using resonant x-ray spectroscopies combined with density functional calculations, we find an asymmetric biaxial strain-induced d-orbital response in ultrathin films of the correlated metal LaNiO3 which are not accessible in the bulk. The sign of the misfit strain governs the stability of an octahedral {"}breathing{"} distortion, which, in turn, produces an emergent charge-ordered ground state with an altered ligand-hole density and bond covalency. Control of this new mechanism opens a pathway to rational orbital engineering, providing a platform for artificially designed Mott materials.",
author = "J. Chakhalian and Rondinelli, {J. M.} and Jian Liu and Gray, {B. A.} and M. Kareev and Moon, {E. J.} and N. Prasai and Joshua Cohn and M. Varela and Tung, {I. C.} and Bedzyk, {M. J.} and Altendorf, {S. G.} and F. Strigari and B. Dabrowski and Tjeng, {L. H.} and Ryan, {P. J.} and Freeland, {J. W.}",
year = "2011",
month = "9",
day = "9",
doi = "10.1103/PhysRevLett.107.116805",
language = "English (US)",
volume = "107",
journal = "Physical Review Letters",
issn = "0031-9007",
publisher = "American Physical Society",
number = "11",

}

TY - JOUR

T1 - Asymmetric orbital-lattice interactions in ultrathin correlated oxide films

AU - Chakhalian, J.

AU - Rondinelli, J. M.

AU - Liu, Jian

AU - Gray, B. A.

AU - Kareev, M.

AU - Moon, E. J.

AU - Prasai, N.

AU - Cohn, Joshua

AU - Varela, M.

AU - Tung, I. C.

AU - Bedzyk, M. J.

AU - Altendorf, S. G.

AU - Strigari, F.

AU - Dabrowski, B.

AU - Tjeng, L. H.

AU - Ryan, P. J.

AU - Freeland, J. W.

PY - 2011/9/9

Y1 - 2011/9/9

N2 - Using resonant x-ray spectroscopies combined with density functional calculations, we find an asymmetric biaxial strain-induced d-orbital response in ultrathin films of the correlated metal LaNiO3 which are not accessible in the bulk. The sign of the misfit strain governs the stability of an octahedral "breathing" distortion, which, in turn, produces an emergent charge-ordered ground state with an altered ligand-hole density and bond covalency. Control of this new mechanism opens a pathway to rational orbital engineering, providing a platform for artificially designed Mott materials.

AB - Using resonant x-ray spectroscopies combined with density functional calculations, we find an asymmetric biaxial strain-induced d-orbital response in ultrathin films of the correlated metal LaNiO3 which are not accessible in the bulk. The sign of the misfit strain governs the stability of an octahedral "breathing" distortion, which, in turn, produces an emergent charge-ordered ground state with an altered ligand-hole density and bond covalency. Control of this new mechanism opens a pathway to rational orbital engineering, providing a platform for artificially designed Mott materials.

UR - http://www.scopus.com/inward/record.url?scp=80052769538&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=80052769538&partnerID=8YFLogxK

U2 - 10.1103/PhysRevLett.107.116805

DO - 10.1103/PhysRevLett.107.116805

M3 - Article

C2 - 22026694

AN - SCOPUS:80052769538

VL - 107

JO - Physical Review Letters

JF - Physical Review Letters

SN - 0031-9007

IS - 11

M1 - 116805

ER -