Abstract
Motivated by increases in the realism of OGCMs and the number of drifting buoys in the ocean observing system, a new Lagrangian assimilation technique is implemented in an idealized, reduced-gravity configuration of the layered primitive equation model MICOM. Using an extensive set of twin experiments, the effectiveness of the Lagrangian observation operator and of a dynamical balancing technique for corrected model variables, which is based on geostrophy and mass conservation, are explored in comparison to a conventional Pseudo-Lagrangian observation operator and an implementation of the Kalman filter method. The results clearly illustrate that the Lagrangian observation operator is superior to the Pseudo-Lagrangian in the parameter range that is relevant for typical oceanic drifter observations, and that the simple dynamical balancing technique works well for midlatitude ocean circulation.
Original language | English (US) |
---|---|
Pages (from-to) | 31-1 - 31-17 |
Journal | Journal of Geophysical Research: Oceans |
Volume | 108 |
Issue number | 7 |
DOIs | |
State | Published - Jul 15 2003 |
Keywords
- Data assimilation
- Drifter assimilation
- Lagrangian data assimilation
- Ocean modeling
- Ocean prediction
ASJC Scopus subject areas
- Geophysics
- Forestry
- Oceanography
- Aquatic Science
- Ecology
- Water Science and Technology
- Soil Science
- Geochemistry and Petrology
- Earth-Surface Processes
- Atmospheric Science
- Earth and Planetary Sciences (miscellaneous)
- Space and Planetary Science
- Palaeontology