TY - JOUR
T1 - Assessment of cerebral S100B levels by proton magnetic resonance spectroscopy after lateral fluid-percussion injury in the rat
AU - Kleindienst, Andrea
AU - Tolias, Christos M.
AU - Corwin, Frank D.
AU - Müller, Christian
AU - Marmarou, Anthony
AU - Fatouros, Panos
AU - Bullock, M. Ross
PY - 2005/6
Y1 - 2005/6
N2 - Object. After traumatic brain injury (TBI), S100B protein is released by astrocytes. Furthermore, cerebrospinal fluid (CSF) and serum S100B levels have been correlated to outcome. Given that no data exist about the temporal profile of cerebral S100B levels following TBI and their correlation to serum levels, the authors examined whether proton magnetic resonance (MR) spectroscopy is capable of measuring S100B. Methods. Results of in vitro proton MR spectroscopy experiments (2.35-tesla magnet, 25 G/cm, point-resolved spatially localized spectroscopy) revealed an S100B-specific peak at 4.5 ppm and confirmed a positive correlation between different S100B concentrations (10 nM-1 μM) and the area under the curve (AUC) for the S100B peak (r = 0.991, p < 0.001). Thereafter, proton MR spectroscopy was performed in male Sprague-Dawley rats (7 X 5 X 5-mm voxel in each hemisphere, TR 3000 msec, TE 30 msec, 256 acquisitions). Exogenously increased CSF S100B levels (∼ 200 ng/ml) through the intraventricular infusion of S100B increased the AUC of the S100B peak from 0.06 ± 0.02 to 0.44 ± 0.06 (p < 0.05), whereas serum S100B levels remained normal. Two hours after lateral fluidpercussion injury, serum S100B levels increased to 0.61 ± 0.09 ng/ml (p < 0.01) and rapidly returned to normal levels, whereas the AUC of the S100B peak increased to 0.19 ± 0.04 at 2 hours postinjury and 0.41 ± 0.07 (p < 0.05) on Day 5 postinjury. Conclusions. Proton MR spectroscopy proves a strong correlation between the AUC of the S100B peak and S100B concentrations. Following experimental TBI, serum S100B levels increased for only a very short period, whereas cerebral S100B levels were increased up to Day 5 postinjury. Given that experimental data indicate that S100B is actively released following TBI, proton MR spectroscopy may represent a new tool to identify increased cerebral S100B levels in patients after injury, thus allowing its biological function to be better understood.
AB - Object. After traumatic brain injury (TBI), S100B protein is released by astrocytes. Furthermore, cerebrospinal fluid (CSF) and serum S100B levels have been correlated to outcome. Given that no data exist about the temporal profile of cerebral S100B levels following TBI and their correlation to serum levels, the authors examined whether proton magnetic resonance (MR) spectroscopy is capable of measuring S100B. Methods. Results of in vitro proton MR spectroscopy experiments (2.35-tesla magnet, 25 G/cm, point-resolved spatially localized spectroscopy) revealed an S100B-specific peak at 4.5 ppm and confirmed a positive correlation between different S100B concentrations (10 nM-1 μM) and the area under the curve (AUC) for the S100B peak (r = 0.991, p < 0.001). Thereafter, proton MR spectroscopy was performed in male Sprague-Dawley rats (7 X 5 X 5-mm voxel in each hemisphere, TR 3000 msec, TE 30 msec, 256 acquisitions). Exogenously increased CSF S100B levels (∼ 200 ng/ml) through the intraventricular infusion of S100B increased the AUC of the S100B peak from 0.06 ± 0.02 to 0.44 ± 0.06 (p < 0.05), whereas serum S100B levels remained normal. Two hours after lateral fluidpercussion injury, serum S100B levels increased to 0.61 ± 0.09 ng/ml (p < 0.01) and rapidly returned to normal levels, whereas the AUC of the S100B peak increased to 0.19 ± 0.04 at 2 hours postinjury and 0.41 ± 0.07 (p < 0.05) on Day 5 postinjury. Conclusions. Proton MR spectroscopy proves a strong correlation between the AUC of the S100B peak and S100B concentrations. Following experimental TBI, serum S100B levels increased for only a very short period, whereas cerebral S100B levels were increased up to Day 5 postinjury. Given that experimental data indicate that S100B is actively released following TBI, proton MR spectroscopy may represent a new tool to identify increased cerebral S100B levels in patients after injury, thus allowing its biological function to be better understood.
KW - Prognosis
KW - Proton magnetic resonance spectroscopy
KW - Rat
KW - S100B protein
KW - Traumatic brain injury
UR - http://www.scopus.com/inward/record.url?scp=23144447444&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=23144447444&partnerID=8YFLogxK
U2 - 10.3171/jns.2005.102.6.1115
DO - 10.3171/jns.2005.102.6.1115
M3 - Article
C2 - 16028772
AN - SCOPUS:23144447444
VL - 102
SP - 1115
EP - 1121
JO - Journal of Neurosurgery
JF - Journal of Neurosurgery
SN - 0022-3085
IS - 6
ER -