TY - JOUR
T1 - Articular cartilage repair
T2 - Current needs, methods and research directions
AU - Correa, Diego
AU - Lietman, Steven A.
PY - 2017/2/1
Y1 - 2017/2/1
N2 - Articular cartilage is a highly specialized tissue whose remarkable properties of deformability, resistance to mechanical loading, and low-friction gliding are essential to joint function. Due to its role as a cushion in bone articulation, articular cartilage is subject to many types of damaging insults, including decades of wear and tear, and acute joint injuries. However, this built-for-life tissue has a very poor intrinsic ability in adulthood to durably heal defects created by damaging insults. Consequently, articular cartilage progressively deteriorates and is eventually eroded, exposing the subchondral bone to the joint space, triggering inflammation and osteophyte development, and generating severe pain and joint incapacitation. The disease is called osteoarthritis (OA) and is today the leading cause of pain and disability in the human population. Researchers and clinicians have worked for decades to develop strategies to treat OA and restore joint function, but they are still far from being able to offer patients effective preventive or restorative treatments. Novel ideas, knowledge and technologies that nurture hope for major new breakthroughs are therefore sought. In this review, we first outline the composition, structure, and functional properties of normal human adult articular cartilage, as a reference for tissue conservation and regenerative strategies. We then describe current options that have been used clinically and in pre-clinical trials to treat osteoarthritic patients, and we discuss the benefits and inadequacies of these treatment options. Next, we review research efforts that are currently ongoing to try and achieve durable repair of functional cartilage tissue. Methods include engineering of tissue implants and we discuss the needs and options for tissue scaffolds, cell sources, and growth and differentiation factors to generate de novo or repair bona fide articular cartilage.
AB - Articular cartilage is a highly specialized tissue whose remarkable properties of deformability, resistance to mechanical loading, and low-friction gliding are essential to joint function. Due to its role as a cushion in bone articulation, articular cartilage is subject to many types of damaging insults, including decades of wear and tear, and acute joint injuries. However, this built-for-life tissue has a very poor intrinsic ability in adulthood to durably heal defects created by damaging insults. Consequently, articular cartilage progressively deteriorates and is eventually eroded, exposing the subchondral bone to the joint space, triggering inflammation and osteophyte development, and generating severe pain and joint incapacitation. The disease is called osteoarthritis (OA) and is today the leading cause of pain and disability in the human population. Researchers and clinicians have worked for decades to develop strategies to treat OA and restore joint function, but they are still far from being able to offer patients effective preventive or restorative treatments. Novel ideas, knowledge and technologies that nurture hope for major new breakthroughs are therefore sought. In this review, we first outline the composition, structure, and functional properties of normal human adult articular cartilage, as a reference for tissue conservation and regenerative strategies. We then describe current options that have been used clinically and in pre-clinical trials to treat osteoarthritic patients, and we discuss the benefits and inadequacies of these treatment options. Next, we review research efforts that are currently ongoing to try and achieve durable repair of functional cartilage tissue. Methods include engineering of tissue implants and we discuss the needs and options for tissue scaffolds, cell sources, and growth and differentiation factors to generate de novo or repair bona fide articular cartilage.
KW - Articular cartilage
KW - Chondrocyte
KW - Osteoarthritis
KW - Stem cells
KW - Tissue engineering
UR - http://www.scopus.com/inward/record.url?scp=84997194364&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84997194364&partnerID=8YFLogxK
U2 - 10.1016/j.semcdb.2016.07.013
DO - 10.1016/j.semcdb.2016.07.013
M3 - Review article
C2 - 27422331
AN - SCOPUS:84997194364
VL - 62
SP - 67
EP - 77
JO - Seminars in Cell and Developmental Biology
JF - Seminars in Cell and Developmental Biology
SN - 1084-9521
ER -