Arctic waters and marginal ice zones: A composite Arctic sea surface temperature algorithm using satellite thermal data

Ron F. Vincent, R. F. Marsden, Peter J Minnett, K. A M Creber, J. R. Buckley

Research output: Contribution to journalArticle

17 Citations (Scopus)

Abstract

The retrieval of Arctic sea surface temperatures (SSTs) using satellite radiometric imagery has not been well documented owing to the paucity of match-ups with in situ data. SST algorithms developed in temperate regions lead to positive biases in high latitudes due to an overestimation of atmospheric IR absorption. The composite arctic sea surface temperature algorithm (CASSTA) presented in this paper was developed from concurrent satellite and shipborne radiometric data collected in the North Water Polynya between April and July 1998. This algorithm considers three temperature regimes: seawater above freezing, the transition zones of water and ice, and primarily ice. These regimes, which are determined by advanced very high resolution radiometer (AVHRR) calibrated brightness temperatures, require different calculations for temperature estimates. For seawater above freezing, a specific Arctic SST algorithm was produced through a linear regression of AVHRR against in situ data. Areas consisting mainly of ice use an established ice surface temperature (IST) algorithm. The transition zone uses a combination of the Arctic SST and IST algorithms. CASSTA determines the Channel 4 brightness temperature for each pixel in a calibrated AVHRR image and then applies the appropriate algorithm to create a thermal image. The mean deviation of CASSTA compared to in situ data was 0.17 K with a standard deviation of 0.21 K. This represents a significant improvement over SST values using McClain coefficients for temperate waters, which overestimate the same data set by an average of 2.40 K. Application of CASSTA to the North Water imagery gives superior results compared to existing SST or IST algorithms.

Original languageEnglish (US)
Article numberC04021
JournalJournal of Geophysical Research C: Oceans
Volume113
Issue number4
DOIs
StatePublished - Apr 8 2008

Fingerprint

marginal ice zone
sea surface temperature
Ice
ice
Satellites
composite materials
Water
Composite materials
water
Advanced Very High Resolution Radiometer
Temperature
AVHRR
surface temperature
Advanced very high resolution radiometers (AVHRR)
brightness temperature
imagery
transition zone
freezing
Hot Temperature
seawater

ASJC Scopus subject areas

  • Geochemistry and Petrology
  • Geophysics
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science
  • Atmospheric Science
  • Astronomy and Astrophysics
  • Oceanography

Cite this

Arctic waters and marginal ice zones : A composite Arctic sea surface temperature algorithm using satellite thermal data. / Vincent, Ron F.; Marsden, R. F.; Minnett, Peter J; Creber, K. A M; Buckley, J. R.

In: Journal of Geophysical Research C: Oceans, Vol. 113, No. 4, C04021, 08.04.2008.

Research output: Contribution to journalArticle

@article{4184e0bf20214ce5b6363652697165ea,
title = "Arctic waters and marginal ice zones: A composite Arctic sea surface temperature algorithm using satellite thermal data",
abstract = "The retrieval of Arctic sea surface temperatures (SSTs) using satellite radiometric imagery has not been well documented owing to the paucity of match-ups with in situ data. SST algorithms developed in temperate regions lead to positive biases in high latitudes due to an overestimation of atmospheric IR absorption. The composite arctic sea surface temperature algorithm (CASSTA) presented in this paper was developed from concurrent satellite and shipborne radiometric data collected in the North Water Polynya between April and July 1998. This algorithm considers three temperature regimes: seawater above freezing, the transition zones of water and ice, and primarily ice. These regimes, which are determined by advanced very high resolution radiometer (AVHRR) calibrated brightness temperatures, require different calculations for temperature estimates. For seawater above freezing, a specific Arctic SST algorithm was produced through a linear regression of AVHRR against in situ data. Areas consisting mainly of ice use an established ice surface temperature (IST) algorithm. The transition zone uses a combination of the Arctic SST and IST algorithms. CASSTA determines the Channel 4 brightness temperature for each pixel in a calibrated AVHRR image and then applies the appropriate algorithm to create a thermal image. The mean deviation of CASSTA compared to in situ data was 0.17 K with a standard deviation of 0.21 K. This represents a significant improvement over SST values using McClain coefficients for temperate waters, which overestimate the same data set by an average of 2.40 K. Application of CASSTA to the North Water imagery gives superior results compared to existing SST or IST algorithms.",
author = "Vincent, {Ron F.} and Marsden, {R. F.} and Minnett, {Peter J} and Creber, {K. A M} and Buckley, {J. R.}",
year = "2008",
month = "4",
day = "8",
doi = "10.1029/2007JC004353",
language = "English (US)",
volume = "113",
journal = "Journal of Geophysical Research: Oceans",
issn = "2169-9275",
publisher = "Wiley-Blackwell",
number = "4",

}

TY - JOUR

T1 - Arctic waters and marginal ice zones

T2 - A composite Arctic sea surface temperature algorithm using satellite thermal data

AU - Vincent, Ron F.

AU - Marsden, R. F.

AU - Minnett, Peter J

AU - Creber, K. A M

AU - Buckley, J. R.

PY - 2008/4/8

Y1 - 2008/4/8

N2 - The retrieval of Arctic sea surface temperatures (SSTs) using satellite radiometric imagery has not been well documented owing to the paucity of match-ups with in situ data. SST algorithms developed in temperate regions lead to positive biases in high latitudes due to an overestimation of atmospheric IR absorption. The composite arctic sea surface temperature algorithm (CASSTA) presented in this paper was developed from concurrent satellite and shipborne radiometric data collected in the North Water Polynya between April and July 1998. This algorithm considers three temperature regimes: seawater above freezing, the transition zones of water and ice, and primarily ice. These regimes, which are determined by advanced very high resolution radiometer (AVHRR) calibrated brightness temperatures, require different calculations for temperature estimates. For seawater above freezing, a specific Arctic SST algorithm was produced through a linear regression of AVHRR against in situ data. Areas consisting mainly of ice use an established ice surface temperature (IST) algorithm. The transition zone uses a combination of the Arctic SST and IST algorithms. CASSTA determines the Channel 4 brightness temperature for each pixel in a calibrated AVHRR image and then applies the appropriate algorithm to create a thermal image. The mean deviation of CASSTA compared to in situ data was 0.17 K with a standard deviation of 0.21 K. This represents a significant improvement over SST values using McClain coefficients for temperate waters, which overestimate the same data set by an average of 2.40 K. Application of CASSTA to the North Water imagery gives superior results compared to existing SST or IST algorithms.

AB - The retrieval of Arctic sea surface temperatures (SSTs) using satellite radiometric imagery has not been well documented owing to the paucity of match-ups with in situ data. SST algorithms developed in temperate regions lead to positive biases in high latitudes due to an overestimation of atmospheric IR absorption. The composite arctic sea surface temperature algorithm (CASSTA) presented in this paper was developed from concurrent satellite and shipborne radiometric data collected in the North Water Polynya between April and July 1998. This algorithm considers three temperature regimes: seawater above freezing, the transition zones of water and ice, and primarily ice. These regimes, which are determined by advanced very high resolution radiometer (AVHRR) calibrated brightness temperatures, require different calculations for temperature estimates. For seawater above freezing, a specific Arctic SST algorithm was produced through a linear regression of AVHRR against in situ data. Areas consisting mainly of ice use an established ice surface temperature (IST) algorithm. The transition zone uses a combination of the Arctic SST and IST algorithms. CASSTA determines the Channel 4 brightness temperature for each pixel in a calibrated AVHRR image and then applies the appropriate algorithm to create a thermal image. The mean deviation of CASSTA compared to in situ data was 0.17 K with a standard deviation of 0.21 K. This represents a significant improvement over SST values using McClain coefficients for temperate waters, which overestimate the same data set by an average of 2.40 K. Application of CASSTA to the North Water imagery gives superior results compared to existing SST or IST algorithms.

UR - http://www.scopus.com/inward/record.url?scp=46849097797&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=46849097797&partnerID=8YFLogxK

U2 - 10.1029/2007JC004353

DO - 10.1029/2007JC004353

M3 - Article

AN - SCOPUS:46849097797

VL - 113

JO - Journal of Geophysical Research: Oceans

JF - Journal of Geophysical Research: Oceans

SN - 2169-9275

IS - 4

M1 - C04021

ER -