Application of oceanic heat content estimation to operational forecasting of recent Atlantic category 5 hurricanes

Michelle M. Mainelli, Mark DeMaria, Lynn K Shay, Gustavo Goni

Research output: Contribution to journalArticle

122 Citations (Scopus)

Abstract

Research investigating the importance of the subsurface ocean structure on tropical cyclone intensity change has been ongoing for several decades. While the emergence of altimetry-derived sea height observations from satellites dates back to the 1980s, it was difficult and uncertain as to how to utilize these measurements in operations as a result of the limited coverage. As the in situ measurement coverage expanded, it became possible to estimate the upper oceanic heat content (OHC) over most ocean regions. Beginning in 2002, daily OHC analyses have been generated at the National Hurricane Center (NHC). These analyses are used qualitatively for the official NHC intensity forecast, and quantitatively to adjust the Statistical Hurricane Intensity Prediction Scheme (SHIPS) forecasts. The primary purpose of this paper is to describe how upper-ocean structure information was transitioned from research to operations, and how it is being used to generate NHC's hurricane intensity forecasts. Examples of the utility of this information for recent category 5 hurricanes (Isabel, Ivan, Emily, Katrina, Rita, and Wilma from the 2003-05 hurricane seasons) are also presented. Results show that for a large sample of Atlantic storms, the OHC variations have a small but positive impact on the intensity forecasts. However, for intense storms, the effect of the OHC is much more significant, suggestive of its importance on rapid intensification. The OHC input improved the average intensity errors of the SHIPS forecasts by up to 5% for all cases from the category 5 storms, and up to 20% for individual storms, with the maximum improvement for the 72-96-h forecasts. The qualitative use of the OHC information on the NHC intensity forecasts is also described. These results show that knowledge of the upper-ocean thermal structure is fundamental to accurately forecasting intensity changes of tropical cyclones, and that this knowledge is making its way into operations. The statistical results obtained here indicate that the OHC only becomes important when it has values much larger than that required to support a tropical cyclone. This result suggests that the OHC is providing a measure of the upper ocean's influence on the storm and improving the forecast.

Original languageEnglish (US)
Pages (from-to)3-16
Number of pages14
JournalWeather and Forecasting
Volume23
Issue number1
DOIs
StatePublished - Feb 2008

Fingerprint

hurricane
upper ocean
tropical cyclone
forecast
altimetry
ocean
thermal structure
prediction
in situ measurement

ASJC Scopus subject areas

  • Atmospheric Science

Cite this

Application of oceanic heat content estimation to operational forecasting of recent Atlantic category 5 hurricanes. / Mainelli, Michelle M.; DeMaria, Mark; Shay, Lynn K; Goni, Gustavo.

In: Weather and Forecasting, Vol. 23, No. 1, 02.2008, p. 3-16.

Research output: Contribution to journalArticle

@article{b6e9f922d5394697bf1dee5cd0160bab,
title = "Application of oceanic heat content estimation to operational forecasting of recent Atlantic category 5 hurricanes",
abstract = "Research investigating the importance of the subsurface ocean structure on tropical cyclone intensity change has been ongoing for several decades. While the emergence of altimetry-derived sea height observations from satellites dates back to the 1980s, it was difficult and uncertain as to how to utilize these measurements in operations as a result of the limited coverage. As the in situ measurement coverage expanded, it became possible to estimate the upper oceanic heat content (OHC) over most ocean regions. Beginning in 2002, daily OHC analyses have been generated at the National Hurricane Center (NHC). These analyses are used qualitatively for the official NHC intensity forecast, and quantitatively to adjust the Statistical Hurricane Intensity Prediction Scheme (SHIPS) forecasts. The primary purpose of this paper is to describe how upper-ocean structure information was transitioned from research to operations, and how it is being used to generate NHC's hurricane intensity forecasts. Examples of the utility of this information for recent category 5 hurricanes (Isabel, Ivan, Emily, Katrina, Rita, and Wilma from the 2003-05 hurricane seasons) are also presented. Results show that for a large sample of Atlantic storms, the OHC variations have a small but positive impact on the intensity forecasts. However, for intense storms, the effect of the OHC is much more significant, suggestive of its importance on rapid intensification. The OHC input improved the average intensity errors of the SHIPS forecasts by up to 5{\%} for all cases from the category 5 storms, and up to 20{\%} for individual storms, with the maximum improvement for the 72-96-h forecasts. The qualitative use of the OHC information on the NHC intensity forecasts is also described. These results show that knowledge of the upper-ocean thermal structure is fundamental to accurately forecasting intensity changes of tropical cyclones, and that this knowledge is making its way into operations. The statistical results obtained here indicate that the OHC only becomes important when it has values much larger than that required to support a tropical cyclone. This result suggests that the OHC is providing a measure of the upper ocean's influence on the storm and improving the forecast.",
author = "Mainelli, {Michelle M.} and Mark DeMaria and Shay, {Lynn K} and Gustavo Goni",
year = "2008",
month = "2",
doi = "10.1175/2007WAF2006111.1",
language = "English (US)",
volume = "23",
pages = "3--16",
journal = "Weather and Forecasting",
issn = "0882-8156",
publisher = "American Meteorological Society",
number = "1",

}

TY - JOUR

T1 - Application of oceanic heat content estimation to operational forecasting of recent Atlantic category 5 hurricanes

AU - Mainelli, Michelle M.

AU - DeMaria, Mark

AU - Shay, Lynn K

AU - Goni, Gustavo

PY - 2008/2

Y1 - 2008/2

N2 - Research investigating the importance of the subsurface ocean structure on tropical cyclone intensity change has been ongoing for several decades. While the emergence of altimetry-derived sea height observations from satellites dates back to the 1980s, it was difficult and uncertain as to how to utilize these measurements in operations as a result of the limited coverage. As the in situ measurement coverage expanded, it became possible to estimate the upper oceanic heat content (OHC) over most ocean regions. Beginning in 2002, daily OHC analyses have been generated at the National Hurricane Center (NHC). These analyses are used qualitatively for the official NHC intensity forecast, and quantitatively to adjust the Statistical Hurricane Intensity Prediction Scheme (SHIPS) forecasts. The primary purpose of this paper is to describe how upper-ocean structure information was transitioned from research to operations, and how it is being used to generate NHC's hurricane intensity forecasts. Examples of the utility of this information for recent category 5 hurricanes (Isabel, Ivan, Emily, Katrina, Rita, and Wilma from the 2003-05 hurricane seasons) are also presented. Results show that for a large sample of Atlantic storms, the OHC variations have a small but positive impact on the intensity forecasts. However, for intense storms, the effect of the OHC is much more significant, suggestive of its importance on rapid intensification. The OHC input improved the average intensity errors of the SHIPS forecasts by up to 5% for all cases from the category 5 storms, and up to 20% for individual storms, with the maximum improvement for the 72-96-h forecasts. The qualitative use of the OHC information on the NHC intensity forecasts is also described. These results show that knowledge of the upper-ocean thermal structure is fundamental to accurately forecasting intensity changes of tropical cyclones, and that this knowledge is making its way into operations. The statistical results obtained here indicate that the OHC only becomes important when it has values much larger than that required to support a tropical cyclone. This result suggests that the OHC is providing a measure of the upper ocean's influence on the storm and improving the forecast.

AB - Research investigating the importance of the subsurface ocean structure on tropical cyclone intensity change has been ongoing for several decades. While the emergence of altimetry-derived sea height observations from satellites dates back to the 1980s, it was difficult and uncertain as to how to utilize these measurements in operations as a result of the limited coverage. As the in situ measurement coverage expanded, it became possible to estimate the upper oceanic heat content (OHC) over most ocean regions. Beginning in 2002, daily OHC analyses have been generated at the National Hurricane Center (NHC). These analyses are used qualitatively for the official NHC intensity forecast, and quantitatively to adjust the Statistical Hurricane Intensity Prediction Scheme (SHIPS) forecasts. The primary purpose of this paper is to describe how upper-ocean structure information was transitioned from research to operations, and how it is being used to generate NHC's hurricane intensity forecasts. Examples of the utility of this information for recent category 5 hurricanes (Isabel, Ivan, Emily, Katrina, Rita, and Wilma from the 2003-05 hurricane seasons) are also presented. Results show that for a large sample of Atlantic storms, the OHC variations have a small but positive impact on the intensity forecasts. However, for intense storms, the effect of the OHC is much more significant, suggestive of its importance on rapid intensification. The OHC input improved the average intensity errors of the SHIPS forecasts by up to 5% for all cases from the category 5 storms, and up to 20% for individual storms, with the maximum improvement for the 72-96-h forecasts. The qualitative use of the OHC information on the NHC intensity forecasts is also described. These results show that knowledge of the upper-ocean thermal structure is fundamental to accurately forecasting intensity changes of tropical cyclones, and that this knowledge is making its way into operations. The statistical results obtained here indicate that the OHC only becomes important when it has values much larger than that required to support a tropical cyclone. This result suggests that the OHC is providing a measure of the upper ocean's influence on the storm and improving the forecast.

UR - http://www.scopus.com/inward/record.url?scp=41949134952&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=41949134952&partnerID=8YFLogxK

U2 - 10.1175/2007WAF2006111.1

DO - 10.1175/2007WAF2006111.1

M3 - Article

VL - 23

SP - 3

EP - 16

JO - Weather and Forecasting

JF - Weather and Forecasting

SN - 0882-8156

IS - 1

ER -