Applicability of InSAR to tropical volcanoes: Insights from central america

S. K. Ebmeier, J. Biggs, T. A. Mather, F. Amelung

Research output: Contribution to journalArticlepeer-review

52 Scopus citations


Measuring volcano deformation is key to understanding the behaviour of erupting volcanoes and detecting those in periods of unrest. Satellite techniques provide the opportunity to do so on a global scale but, with some notable exceptions, the deformation of volcanoes in the tropics has been understudied relative to those at higher latitudes, largely due to technical difficulties in applying Interferometric Synthetic Aperture Radar (InSAR). We perform a systematic survey of the Central American Volcanic Arc to investigate the applicability of Interferometric Synthetic Aperture Radar (InSAR) to volcanoes in the tropics. Volcano characteristics that may prevent InSAR measurement include: (1) dense vegetation cover; (2) persistent activity; and (3) steep slopes. Measurements of deformation are further inhibited by atmospheric artefacts associated with: (4) large changes in topographical relief. We present a systematic method for distinguishing between water vapour artefacts and true deformation. Our data show a linear relationship (c. 2 cm/km) between the magnitudes of water vapour artefacts and volcano edifice height. For high relief volcanoes (e.g. Fuego, Guatemala, 3763 m a.s.l. (above sea level)) errors are of the order of 4-5 cm across the volcano's edifice but are less than 2 cm for lower relief (e.g. Masaya, Nicaragua, 635 m a.s.l.). Examples such as Arenal, Atitlan and Fuego illustrate that satellite acquisition strategies incorporating ascending and descending tracks are particularly important for studying steep-sided volcanoes. Poor coherence is primarily associated with temporal decorrelation, which is typically more rapid in southern Central America where Evergreen broadleaf vegetation dominates. Land-use classification is a better predictor of decorrelation rate than vegetation index. Comparison of coherence for different radar wavelengths match expectations; high resolution X-band radar is best suited to local studies where high-resolution digital elevation models (DEMs) exist, while L-band wavelengths are necessary for regional surveys. However, this is the first time that relationships between phase coherence and time, perpendicular baseline, radar wavelength, and land use have been quantified on the scale of a whole volcanic arc.

Original languageEnglish (US)
Pages (from-to)15-37
Number of pages23
JournalGeological Society Special Publication
Issue number1
StatePublished - 2013

ASJC Scopus subject areas

  • Water Science and Technology
  • Ocean Engineering
  • Geology


Dive into the research topics of 'Applicability of InSAR to tropical volcanoes: Insights from central america'. Together they form a unique fingerprint.

Cite this