TY - JOUR
T1 - Apparent involvement of ribonuclease D in the 3' processing of tRNA precursors.
AU - Cudny, H.
AU - Deutscher, M. P.
PY - 1980/2
Y1 - 1980/2
N2 - Escherichia coli RNase D and RNase II have been purified to homogeneity and compared for their ability to remove extra nucleotides following the -C-C-A sequence in tRNA precursors. RNase D and RNase II are single-chain proteins with molecular weights of 38,000 and 78,000, respectively. Both enzymes require a divalent cation for activity on tRNA precursors, but, in addition, RNase II is stimulated by monovalent cations. RNase D specifically removes mononucleotide residues from a mixture of tRNA precursors to generate amino acid acceptor activity for essentially all amino acids. Although RNase II can also remove precursor-specific residues, no amino acid acceptor activity is recovered. Similarly, RNase D action on the E. coli tRNATyr precursor is limited, whereas RNase II causes extensive degradation. In contrast to the processive mode of hydrolysis by RNase II, RNase D removes nucleotides randomly and slows down greatly at the -C-C-A sequence, thereby allowing the tRNA to be aminoacylated and protected from further degradation. These results suggest that RNase D is the 3'-processing nuclease in vivo and that RNase II is a nonspecific degradative enzyme. The importance of RNA conformation for correct processing is also discussed.
AB - Escherichia coli RNase D and RNase II have been purified to homogeneity and compared for their ability to remove extra nucleotides following the -C-C-A sequence in tRNA precursors. RNase D and RNase II are single-chain proteins with molecular weights of 38,000 and 78,000, respectively. Both enzymes require a divalent cation for activity on tRNA precursors, but, in addition, RNase II is stimulated by monovalent cations. RNase D specifically removes mononucleotide residues from a mixture of tRNA precursors to generate amino acid acceptor activity for essentially all amino acids. Although RNase II can also remove precursor-specific residues, no amino acid acceptor activity is recovered. Similarly, RNase D action on the E. coli tRNATyr precursor is limited, whereas RNase II causes extensive degradation. In contrast to the processive mode of hydrolysis by RNase II, RNase D removes nucleotides randomly and slows down greatly at the -C-C-A sequence, thereby allowing the tRNA to be aminoacylated and protected from further degradation. These results suggest that RNase D is the 3'-processing nuclease in vivo and that RNase II is a nonspecific degradative enzyme. The importance of RNA conformation for correct processing is also discussed.
UR - http://www.scopus.com/inward/record.url?scp=0018980250&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0018980250&partnerID=8YFLogxK
U2 - 10.1073/pnas.77.2.837
DO - 10.1073/pnas.77.2.837
M3 - Article
C2 - 6153805
AN - SCOPUS:0018980250
VL - 77
SP - 837
EP - 841
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
SN - 0027-8424
IS - 2
ER -