An autocrine insulin feedback loop maintains pancreatic β-cell 3-phosphorylated inositol lipids

Jia Yu, Per Olof Berggren, Christopher J. Barker

Research output: Contribution to journalArticle

17 Scopus citations

Abstract

Phosphatidylinositol 3-kinases (PI3Ks) have a central role in pancreatic β-cell function. Downstream events include the regulation of K ATP channel activity, insulin secretion, gene transcription, and cell survival. Fewer data are available on the 3-phosphorylated inositol lipids (3-PIs) that are the primary products of these kinases. We characterized these PI3K products in insulin-secreting HIT T15 cells and were able to demonstrate, for the first time the presence of phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P2]. We then showed that glucose can significantly increase PtdIns(3,4,5)P3, PtdIns(3,4)P2, and notably PtdIns(3,5)P2. We investigated the mechanism(s) whereby these molecules are generated under both basal and glucose-stimulated conditions. We postulated that insulin exocytosis could drive the rises in 3-PIs. In our experimental system, we could detect a rise in insulin secretion within 1 min of glucose stimulation, thus allowing the possibility that early rises in 3-PIs are regulated by secreted insulin. This was confirmed because blockade of the β-cell insulin receptor completely abrogated the glucose-mediated increase of all three lipids, driving their concentrations below basal levels. Using primary pancreatic islets and either blockade of the insulin receptor or antibodies to insulin, we verified that basal insulin secretion is responsible for the maintenance of 3-PIs. Therefore, autocrine insulin signaling, a feature compromised in diabetes, is essential to up-regulate both basal and glucose-stimulated levels of a vital family of second messengers that preserve and drive pancreatic β-cell function.

Original languageEnglish (US)
Pages (from-to)2775-2784
Number of pages10
JournalMolecular Endocrinology
Volume21
Issue number11
DOIs
StatePublished - Nov 1 2007

    Fingerprint

ASJC Scopus subject areas

  • Molecular Biology
  • Endocrinology

Cite this