Ammonia transport across the skin of adult rainbow trout (Oncorhynchus mykiss) exposed to high environmental ammonia (HEA)

Alex M. Zimmer, Colin J. Brauner, Chris M. Wood

Research output: Contribution to journalArticlepeer-review

21 Scopus citations


Recent molecular evidence points towards a capacity for ammonia transport across the skin of adult rainbow trout. A series of in vivo and in vitro experiments were conducted to understand the role of cutaneous ammonia excretion (J amm) under control conditions and after 12-h pre-exposure to high environmental ammonia (HEA; 2 mmol/l NH4HCO3). Divided chamber experiments with bladder-catheterized, rectally ligated fish under light anesthesia were performed to separate cutaneous J amm from branchial, renal, and intestinal J amm. Under control conditions, cutaneous J amm accounted for 4.5 % of total J amm in vivo. In fish pre-exposed to HEA, plasma total ammonia concentration increased 20-fold to approximately 1,000 μmol/l, branchial J amm increased 1.5- to 2.7-fold, and urinary J amm increased about 7-fold. Urinary J amm still accounted for less than 2 % of total J amm. Cutaneous J amm increased 4-fold yet amounted to only 5.7 % of total J amm in these fish. Genes (Rhcg1, Rhcg2, Rhbg, NHE-2, v-type H+-ATPase) known to be involved in ammonia excretion at the gills of trout were all expressed at the mRNA level in the skin, but their expression did not increase with HEA pre-exposure. In vitro analyses using [14C] methylamine (MA), an ammonia analog which is transported by Rh proteins, demonstrated that MA permeability in isolated skin sections was higher in HEA pre-exposed fish than in control fish. The addition of basolateral ammonia (1,000 μmol/l) to this system abolished this increase in permeability, suggesting ammonia competition with MA for Rh-mediated transport across the skin of HEA pre-exposed trout; this did not occur in skin sections from control trout. Moreover, in vitro J amm by the skin of fish which had been pre-exposed to HEA was also higher than in control fish in the absence of basolateral ammonia, pointing towards a possible cutaneous ammonia loading in response to HEA. In vitro MA permeability was reduced upon the addition of amiloride (10-4 mol/l), but not phenamil (10-5 mol/l) suggesting a role for a Na/H-exchanger (NHE) in cutaneous ammonia transport, as has been previously described in the skin of larval fish. Overall, it appears that under control conditions and in response to HEA pre-exposure, the skin makes only a very minor contribution to total J amm, but the observed increases in cutaneous J amm in vivo and in cutaneous J amm and MA permeability in vitro demonstrate the capacity for ammonia transport in the skin of adult trout. It remains unclear if this capacity may become significant under certain environmental challenges or if it is merely a remnant of cutaneous transport capacity from early life stages in these fish.

Original languageEnglish (US)
Pages (from-to)77-90
Number of pages14
JournalJournal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology
Issue number1
StatePublished - Jan 2014


  • Ammonia excretion
  • Cutaneous excretion
  • Fish skin
  • High environmental ammonia (HEA)
  • Rainbow trout
  • Rhesus (Rh) proteins

ASJC Scopus subject areas

  • Physiology
  • Ecology, Evolution, Behavior and Systematics
  • Animal Science and Zoology
  • Biochemistry
  • Endocrinology


Dive into the research topics of 'Ammonia transport across the skin of adult rainbow trout (Oncorhynchus mykiss) exposed to high environmental ammonia (HEA)'. Together they form a unique fingerprint.

Cite this