Allosteric inhibition of the IRE1α RNase preserves cell viability and function during endoplasmic reticulum stress

Rajarshi Ghosh, Likun Wang, Eric S. Wang, B. Gayani K Perera, Aeid Igbaria, Shuhei Morita, Kris Prado, Maike Thamsen, Deborah Caswell, Hector Macias, Kurt F. Weiberth, Micah J. Gliedt, Marcel V. Alavi, Sanjay B. Hari, Arinjay K. Mitra, Barun Bhhatarai, Stephan C Schuerer, Erik L. Snapp, Douglas B. Gould, Michael S. German & 4 others Bradley J. Backes, Dustin J. Maly, Scott A. Oakes, Feroz R. Papa

Research output: Contribution to journalArticle

157 Citations (Scopus)

Abstract

Depending on endoplasmic reticulum (ER) stress levels, the ER transmembrane multidomain protein IRE1α promotes either adaptation or apoptosis. Unfolded ER proteins cause IRE1α lumenal domain homo-oligomerization, inducing trans autophosphorylation that further drives homo-oligomerization of its cytosolic kinase/endoribonuclease (RNase) domains to activate mRNA splicing of adaptive XBP1 transcription factor. However, under high/chronic ER stress, IRE1α surpasses an oligomerization threshold that expands RNase substrate repertoire to many ER-localized mRNAs, leading to apoptosis. To modulate these effects, we developed ATP-competitive IRE1α Kinase-Inhibiting RNase Attenuators - KIRAs - that allosterically inhibit IRE1α's RNase by breaking oligomers. One optimized KIRA, KIRA6, inhibits IRE1α in vivo and promotes cell survival under ER stress. Intravitreally, KIRA6 preserves photoreceptor functional viability in rat models of ER stress-induced retinal degeneration. Systemically, KIRA6 preserves pancreatic β cells, increases insulin, and reduces hyperglycemia in Akita diabetic mice. Thus, IRE1α powerfully controls cell fate but can itself be controlled with small molecules to reduce cell degeneration.

Original languageEnglish
Pages (from-to)534-548
Number of pages15
JournalCell
Volume158
Issue number3
DOIs
StatePublished - Jul 31 2014

Fingerprint

Endoplasmic Reticulum Stress
Ribonucleases
Oligomerization
Cell Survival
Cells
Endoplasmic Reticulum
Phosphotransferases
Endoribonucleases
Apoptosis
Retinal Degeneration
Messenger RNA
Oligomers
Hyperglycemia
Rats
Proteins
Transcription Factors
Adenosine Triphosphate
Insulin
Molecules
Substrates

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)

Cite this

Ghosh, R., Wang, L., Wang, E. S., Perera, B. G. K., Igbaria, A., Morita, S., ... Papa, F. R. (2014). Allosteric inhibition of the IRE1α RNase preserves cell viability and function during endoplasmic reticulum stress. Cell, 158(3), 534-548. https://doi.org/10.1016/j.cell.2014.07.002

Allosteric inhibition of the IRE1α RNase preserves cell viability and function during endoplasmic reticulum stress. / Ghosh, Rajarshi; Wang, Likun; Wang, Eric S.; Perera, B. Gayani K; Igbaria, Aeid; Morita, Shuhei; Prado, Kris; Thamsen, Maike; Caswell, Deborah; Macias, Hector; Weiberth, Kurt F.; Gliedt, Micah J.; Alavi, Marcel V.; Hari, Sanjay B.; Mitra, Arinjay K.; Bhhatarai, Barun; Schuerer, Stephan C; Snapp, Erik L.; Gould, Douglas B.; German, Michael S.; Backes, Bradley J.; Maly, Dustin J.; Oakes, Scott A.; Papa, Feroz R.

In: Cell, Vol. 158, No. 3, 31.07.2014, p. 534-548.

Research output: Contribution to journalArticle

Ghosh, R, Wang, L, Wang, ES, Perera, BGK, Igbaria, A, Morita, S, Prado, K, Thamsen, M, Caswell, D, Macias, H, Weiberth, KF, Gliedt, MJ, Alavi, MV, Hari, SB, Mitra, AK, Bhhatarai, B, Schuerer, SC, Snapp, EL, Gould, DB, German, MS, Backes, BJ, Maly, DJ, Oakes, SA & Papa, FR 2014, 'Allosteric inhibition of the IRE1α RNase preserves cell viability and function during endoplasmic reticulum stress', Cell, vol. 158, no. 3, pp. 534-548. https://doi.org/10.1016/j.cell.2014.07.002
Ghosh, Rajarshi ; Wang, Likun ; Wang, Eric S. ; Perera, B. Gayani K ; Igbaria, Aeid ; Morita, Shuhei ; Prado, Kris ; Thamsen, Maike ; Caswell, Deborah ; Macias, Hector ; Weiberth, Kurt F. ; Gliedt, Micah J. ; Alavi, Marcel V. ; Hari, Sanjay B. ; Mitra, Arinjay K. ; Bhhatarai, Barun ; Schuerer, Stephan C ; Snapp, Erik L. ; Gould, Douglas B. ; German, Michael S. ; Backes, Bradley J. ; Maly, Dustin J. ; Oakes, Scott A. ; Papa, Feroz R. / Allosteric inhibition of the IRE1α RNase preserves cell viability and function during endoplasmic reticulum stress. In: Cell. 2014 ; Vol. 158, No. 3. pp. 534-548.
@article{d900632ab90a4e6ab1a220e9fd1274b7,
title = "Allosteric inhibition of the IRE1α RNase preserves cell viability and function during endoplasmic reticulum stress",
abstract = "Depending on endoplasmic reticulum (ER) stress levels, the ER transmembrane multidomain protein IRE1α promotes either adaptation or apoptosis. Unfolded ER proteins cause IRE1α lumenal domain homo-oligomerization, inducing trans autophosphorylation that further drives homo-oligomerization of its cytosolic kinase/endoribonuclease (RNase) domains to activate mRNA splicing of adaptive XBP1 transcription factor. However, under high/chronic ER stress, IRE1α surpasses an oligomerization threshold that expands RNase substrate repertoire to many ER-localized mRNAs, leading to apoptosis. To modulate these effects, we developed ATP-competitive IRE1α Kinase-Inhibiting RNase Attenuators - KIRAs - that allosterically inhibit IRE1α's RNase by breaking oligomers. One optimized KIRA, KIRA6, inhibits IRE1α in vivo and promotes cell survival under ER stress. Intravitreally, KIRA6 preserves photoreceptor functional viability in rat models of ER stress-induced retinal degeneration. Systemically, KIRA6 preserves pancreatic β cells, increases insulin, and reduces hyperglycemia in Akita diabetic mice. Thus, IRE1α powerfully controls cell fate but can itself be controlled with small molecules to reduce cell degeneration.",
author = "Rajarshi Ghosh and Likun Wang and Wang, {Eric S.} and Perera, {B. Gayani K} and Aeid Igbaria and Shuhei Morita and Kris Prado and Maike Thamsen and Deborah Caswell and Hector Macias and Weiberth, {Kurt F.} and Gliedt, {Micah J.} and Alavi, {Marcel V.} and Hari, {Sanjay B.} and Mitra, {Arinjay K.} and Barun Bhhatarai and Schuerer, {Stephan C} and Snapp, {Erik L.} and Gould, {Douglas B.} and German, {Michael S.} and Backes, {Bradley J.} and Maly, {Dustin J.} and Oakes, {Scott A.} and Papa, {Feroz R.}",
year = "2014",
month = "7",
day = "31",
doi = "10.1016/j.cell.2014.07.002",
language = "English",
volume = "158",
pages = "534--548",
journal = "Cell",
issn = "0092-8674",
publisher = "Cell Press",
number = "3",

}

TY - JOUR

T1 - Allosteric inhibition of the IRE1α RNase preserves cell viability and function during endoplasmic reticulum stress

AU - Ghosh, Rajarshi

AU - Wang, Likun

AU - Wang, Eric S.

AU - Perera, B. Gayani K

AU - Igbaria, Aeid

AU - Morita, Shuhei

AU - Prado, Kris

AU - Thamsen, Maike

AU - Caswell, Deborah

AU - Macias, Hector

AU - Weiberth, Kurt F.

AU - Gliedt, Micah J.

AU - Alavi, Marcel V.

AU - Hari, Sanjay B.

AU - Mitra, Arinjay K.

AU - Bhhatarai, Barun

AU - Schuerer, Stephan C

AU - Snapp, Erik L.

AU - Gould, Douglas B.

AU - German, Michael S.

AU - Backes, Bradley J.

AU - Maly, Dustin J.

AU - Oakes, Scott A.

AU - Papa, Feroz R.

PY - 2014/7/31

Y1 - 2014/7/31

N2 - Depending on endoplasmic reticulum (ER) stress levels, the ER transmembrane multidomain protein IRE1α promotes either adaptation or apoptosis. Unfolded ER proteins cause IRE1α lumenal domain homo-oligomerization, inducing trans autophosphorylation that further drives homo-oligomerization of its cytosolic kinase/endoribonuclease (RNase) domains to activate mRNA splicing of adaptive XBP1 transcription factor. However, under high/chronic ER stress, IRE1α surpasses an oligomerization threshold that expands RNase substrate repertoire to many ER-localized mRNAs, leading to apoptosis. To modulate these effects, we developed ATP-competitive IRE1α Kinase-Inhibiting RNase Attenuators - KIRAs - that allosterically inhibit IRE1α's RNase by breaking oligomers. One optimized KIRA, KIRA6, inhibits IRE1α in vivo and promotes cell survival under ER stress. Intravitreally, KIRA6 preserves photoreceptor functional viability in rat models of ER stress-induced retinal degeneration. Systemically, KIRA6 preserves pancreatic β cells, increases insulin, and reduces hyperglycemia in Akita diabetic mice. Thus, IRE1α powerfully controls cell fate but can itself be controlled with small molecules to reduce cell degeneration.

AB - Depending on endoplasmic reticulum (ER) stress levels, the ER transmembrane multidomain protein IRE1α promotes either adaptation or apoptosis. Unfolded ER proteins cause IRE1α lumenal domain homo-oligomerization, inducing trans autophosphorylation that further drives homo-oligomerization of its cytosolic kinase/endoribonuclease (RNase) domains to activate mRNA splicing of adaptive XBP1 transcription factor. However, under high/chronic ER stress, IRE1α surpasses an oligomerization threshold that expands RNase substrate repertoire to many ER-localized mRNAs, leading to apoptosis. To modulate these effects, we developed ATP-competitive IRE1α Kinase-Inhibiting RNase Attenuators - KIRAs - that allosterically inhibit IRE1α's RNase by breaking oligomers. One optimized KIRA, KIRA6, inhibits IRE1α in vivo and promotes cell survival under ER stress. Intravitreally, KIRA6 preserves photoreceptor functional viability in rat models of ER stress-induced retinal degeneration. Systemically, KIRA6 preserves pancreatic β cells, increases insulin, and reduces hyperglycemia in Akita diabetic mice. Thus, IRE1α powerfully controls cell fate but can itself be controlled with small molecules to reduce cell degeneration.

UR - http://www.scopus.com/inward/record.url?scp=84905492694&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84905492694&partnerID=8YFLogxK

U2 - 10.1016/j.cell.2014.07.002

DO - 10.1016/j.cell.2014.07.002

M3 - Article

VL - 158

SP - 534

EP - 548

JO - Cell

JF - Cell

SN - 0092-8674

IS - 3

ER -