TY - JOUR
T1 - Afferent and efferent connections of the striate and extrastriate visual cortex of the normal and reeler mouse
AU - Simmons, Peter A.
AU - Lemmon, Vance
AU - Pearlman, Alan L.
PY - 1982/11/1
Y1 - 1982/11/1
N2 - In order to analyze the role of lamination in establishing the precisely ordered connectional pattern of the neocortex, we compared the afferent and efferent connections of the visual cortical areas in normal mice with those of the mutant mouse reeler (rl). The reeler mutation causes disruption of the laminar organization of the neocortex; all classes of neurons are present but are abnormally located. The corticocortical and thalamocortical connections of visual cortical areas 17, 18a, and 18b were determined in normal and reeler mice with injections of horseradish peroxidase (HRP) or HRP conjugated with wheat germ agglutinin (HRP-WGA). The diffusion of HRP-WGA is highly restricted due to the surface binding properties of the lectin; it was particularly effective in demonstrating retinotopically ordered connections. We found that the patterns of connections made by the reeler mutant are indistinguishable from normal. Cortical loci in area 17 are reciprocally connected to homotopic locations in areas 18a and 18b. Area 17 is also reciprocally connected with the dorsal lateral geniculate nucleus of the thalamus and projects to the superior colliculus. Areas 18a and 18b are reciprocally connected with each other and with the lateral posterior and lateral nuclei of the thalamus, respectively. In addition, we found evidence of reciprocal connections between the lateral posterior nucleus and area 17, and between the lateral nucleus and areas 17 and 18a. The results indicate that neurons in visual cortical areas of the reeler mutant mouse are capable of forming retinotopically organized corticocortical and thalamocortical connections in a pattern similar to that found in normal animals. Thus the genetic anomaly producing incorrect neuronal positioning during development of the reeler cortex does not seriously impede the pathway and target recognition mechanisms responsible for formation of functionally appropriate cortical connections.
AB - In order to analyze the role of lamination in establishing the precisely ordered connectional pattern of the neocortex, we compared the afferent and efferent connections of the visual cortical areas in normal mice with those of the mutant mouse reeler (rl). The reeler mutation causes disruption of the laminar organization of the neocortex; all classes of neurons are present but are abnormally located. The corticocortical and thalamocortical connections of visual cortical areas 17, 18a, and 18b were determined in normal and reeler mice with injections of horseradish peroxidase (HRP) or HRP conjugated with wheat germ agglutinin (HRP-WGA). The diffusion of HRP-WGA is highly restricted due to the surface binding properties of the lectin; it was particularly effective in demonstrating retinotopically ordered connections. We found that the patterns of connections made by the reeler mutant are indistinguishable from normal. Cortical loci in area 17 are reciprocally connected to homotopic locations in areas 18a and 18b. Area 17 is also reciprocally connected with the dorsal lateral geniculate nucleus of the thalamus and projects to the superior colliculus. Areas 18a and 18b are reciprocally connected with each other and with the lateral posterior and lateral nuclei of the thalamus, respectively. In addition, we found evidence of reciprocal connections between the lateral posterior nucleus and area 17, and between the lateral nucleus and areas 17 and 18a. The results indicate that neurons in visual cortical areas of the reeler mutant mouse are capable of forming retinotopically organized corticocortical and thalamocortical connections in a pattern similar to that found in normal animals. Thus the genetic anomaly producing incorrect neuronal positioning during development of the reeler cortex does not seriously impede the pathway and target recognition mechanisms responsible for formation of functionally appropriate cortical connections.
UR - http://www.scopus.com/inward/record.url?scp=0020450136&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0020450136&partnerID=8YFLogxK
U2 - 10.1002/cne.902110308
DO - 10.1002/cne.902110308
M3 - Article
C2 - 7174895
AN - SCOPUS:0020450136
VL - 211
SP - 295
EP - 308
JO - Journal of Comparative Neurology
JF - Journal of Comparative Neurology
SN - 0021-9967
IS - 3
ER -